Potential energy curve of N2 revisited

2011 ◽  
Vol 76 (4) ◽  
pp. 327-341 ◽  
Author(s):  
Vladimír Špirko ◽  
Xiangzhu Li ◽  
Josef Paldus

Recently generated ground state potential energy curves (PECs) for the nitrogen molecule, as obtained with the reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR-CCSD), and its version corrected for the secondary triples RMR-CCSD(T), using cc-pVXZ basis sets with X = D, T, and Q, as well as the extrapolated complete basis set (cbs) limit (X. Li and J. Paldus: J. Chem. Phys. 2008, 129, 054104), are compared with both the highly accurate theoretical configuration interaction PEC of Gdanitz (Chem. Phys. Lett. 1998, 283, 253) and analytic PECs obtained by fitting an extensive set of experimental data (R. J. Le Roy et al.: J. Chem. Phys. 2006, 125, 164310). These results are analyzed using a morphing procedure based on the reduced potential curve (RPC) method of Jenč. It is found that an RPC fit of both theoretical potentials can be achieved with only a few parameters. The RMR PECs are found to provide an excellent description of experimentally available vibrational levels, but significantly deviate from those of Gdanitz’s PEC for highly stretched geometries, yet still do provide a qualitatively correct PECs that lie within the region delimited by Le Roy’s analytical PECs.

RSC Advances ◽  
2018 ◽  
Vol 8 (25) ◽  
pp. 13635-13642 ◽  
Author(s):  
Lu Guo ◽  
Hongyu Ma ◽  
Lulu Zhang ◽  
Yuzhi Song ◽  
Yongqing Li

A full three-dimensional global potential energy surface is reported for the ground state of CH2+ by fitting accurate multireference configuration interaction energies calculated using aug-cc-pVQZ and aug-cc-pV5Z basis sets with extrapolation of the electron correlation energy to the complete basis set limit.


2018 ◽  
Author(s):  
Danilo Carmona ◽  
David Contreras ◽  
Oscar A. Douglas-Gallardo ◽  
Stefan Vogt-Geisse ◽  
Pablo Jaque ◽  
...  

The Fenton reaction plays a central role in many chemical and biological processes and has various applications as e.g. water remediation. The reaction consists of the iron-catalyzed homolytic cleavage of the oxygen-oxygen bond in the hydrogen peroxide molecule and the reduction of the hydroxyl radical. Here, we study these two elementary steps with high-level ab-initio calculations at the complete basis set limit and address the performance of different DFT methods following a specific classification based on the Jacob´s ladder in combination with various Pople's basis sets. Ab-initio calculations at the complete basis set limit are in agreement to experimental reference data and identified a significant contribution of the electron correlation energy to the bond dissociation energy (BDE) of the oxygen-oxygen bond in hydrogen peroxide and the electron affinity (EA) of the hydroxyl radical. The studied DFT methods were able to reproduce the ab-initio reference values, although no functional was particularly better for both reactions. The inclusion of HF exchange in the DFT functionals lead in most cases to larger deviations, which might be related to the poor description of the two reactions by the HF method. Considering the computational cost, DFT methods provide better BDE and EA values than HF and post--HF methods with an almost MP2 or CCSD level of accuracy. However, no systematic general prediction of the error based on the employed functional could be established and no systematic improvement with increasing the size in the Pople's basis set was found, although for BDE values certain systematic basis set dependence was observed. Moreover, the quality of the hydrogen peroxide, hydroxyl radical and hydroxyl anion structures obtained from these functionals was compared to experimental reference data. In general, bond lengths were well reproduced and the error in the angles were between one and two degrees with some systematic trend with the basis sets. From our results we conclude that DFT methods present a computationally less expensive alternative to describe the two elementary steps of the Fenton reaction. However, choice of approximated functionals and basis sets must be carefully done and the provided benchmark allows a systematic validation of the electronic structure method to be employed


2018 ◽  
Author(s):  
Marc E. Segovia ◽  
Oscar Ventura

<p>Diffusion Monte Carlo (DMC) and Reptation Monte Carlo (RMC) methods, have been applied to study some properties of the NaK molecule. Hartree-Fock (HF), Density Functional (DFT) and single and double configuration interaction (SDCI) wavefunctions with a valence quadruple zeta atomic natural orbital (VQZ/ANO) basis set were used as trial wavefunctions. Values for the potential energy curve, dissociation energy and dipole moment were calculated for all methods and compared with experimental results and previous theoretical derivations. Quantum Monte Carlo (QMC) calculations were shown to be useful methods to recover correlation in NaK, essential to obtain a reasonable description of the molecule. The equilibrium distance—interpolated from the potential energy curves—yield a value of 3.5 Å, in agreement with the experimental value. The dissociation energy, however, is not as good. In this case, a conventional CCSD(T) calculation with an extended aug-pc-4 basis set gives a much better agreement to experiment. On the contrary, the CCSD(T), other MO and DFT methods are not able to reproduce correctly the large dipole moment of this molecule. Even DMC methods with a simple HF trial wavefunction are able to give a better agreement to experiment. RMC methods are even better, and the value obtained with a B3LYP trial wavefunction is very close to the experimental one.</p>


Sign in / Sign up

Export Citation Format

Share Document