nitrogen molecule
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 12)

H-INDEX

35
(FIVE YEARS 1)

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 495
Author(s):  
Justyna Krupa ◽  
Maria Wierzejewska ◽  
Jan Lundell

Weak complexes of isocyanic acid (HNCO) with nitrogen were studied computationally employing MP2, B2PLYPD3 and B3LYPD3 methods and experimentally by FTIR matrix isolation technique. The results show that HNCO interacts specifically with N2. For the 1:1 stoichiometry, three stable minima were located on the potential energy surface. The most stable of them involves a weak, almost linear hydrogen bond from the NH group of the acid molecule to nitrogen molecule lone pair. Two other structures are bound by van der Waals interactions of N⋯N and C⋯N types. The 1:2 and 2:1 HNCO complexes with nitrogen were computationally tracked as well. Similar types of interactions as in the 1:1 complexes were found in the case of the higher stoichiometry complexes. Analysis of the HNCO/N2/Ar spectra after deposition indicates that the 1:1 hydrogen-bonded complex is prevalent in argon matrices with a small amount of the van der Waals structures also present. Upon annealing, complexes of the 1:2 and 2:1 stoichiometry were detected as well.


Author(s):  
Swarupananda Mukherjee ◽  
Saumyakanti Giri ◽  
Sohini Bera ◽  
Sharanya Mukherjee ◽  
Shankha Dey ◽  
...  

The protein degradation is a well-controlled, highly selective mechanism for intracellular protein degradation and its turnover. There are several proteins in our body but among them some goes for degradation at a time. Proteins which are going to be degraded are identified by a 76 amino acid polypeptide known as ubiquitin and the process is known as ubiquitination. Ubiquitation means the attachment of many ubiquitin molecules to the target protein molecule that need to be broken down. During the ubiquitination procedure iso peptide bonds are formed. And these iso peptide bonds are formed between the nitrogen molecule of the lysine residue from the target protein and the carbon molecule of the ubiquitin molecule. Through this endogenous ubiquitin-proteasome machinery, disease responsible proteins can be permanently removed. Energy is required for this process and that’s why ATP is employed in this process. This targeted protein degradation plays a very crucial role for cancer and other diseases. Through this review we just enlighten the significant points if the targeted protein degradation and its significance.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5340
Author(s):  
Valentina Innocenzi ◽  
Svetlana B. Zueva ◽  
Francesco Vegliò ◽  
Ida De Michelis

TMAH is quaternary ammonium salt, consists of a methylated nitrogen molecule, and is widely used in the electronics industry as a developer and silicon etching agent. This substance is toxic and fatal if ingested. It can also cause skin burns, eye damage, and organ damage. Moreover, TMAH exhibits long-lasting toxicity to aquatic systems. Despite this known toxicity, the authorities currently do not provide emission limits (i.e., discharge concentrations) for wastewater by EU regulation. The current scenario necessitates the study of the processes for industrial wastewater containing TMAH. This work aims to present a successful example of the treatment process for the degradation of TMAH waste solutions of the E&S industry. Research was conducted at the pilot scale, and the process feasibility (both technical and economic) and its environmental sustainability are demonstrated. This process, which treats three exhausted solutions with a high concentration of toxic substances, is considered to be innovative.


2021 ◽  
Author(s):  
Yuya Ashida ◽  
Yoshiaki Nishibayashi

Nitrogen fixation using homogeneous transition metal complexes under mild reaction conditions is a challenging topic in the field of chemistry. Several successful examples of the catalytic conversion of nitrogen molecule...


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3262
Author(s):  
Iwona Kosendiak ◽  
Jussi M.E. Ahokas ◽  
Justyna Krupa ◽  
Jan Lundell ◽  
Maria Wierzejewska

Molecular complexes between glycolic acid and nitrogen were studied in a low-temperature argon matrix with FTIR spectroscopy, and supported by MP2 and BLYPD3 calculations. The calculations indicate 11 and 10 stable complex structures at the MP2 and BLYPD3 levels of theories, respectively. However, only one hydrogen-bonded complex structure involving the most stable SSC conformer of glycolic acid was found experimentally, where the nitrogen molecule is bound with the carboxylic OH group of the SSC conformer. The complex shows a rich site structure variation upon deposition of the matrix in different temperatures and upon annealing experiments, which provide interesting prospects for site-selective chemistry.


Sign in / Sign up

Export Citation Format

Share Document