nonadiabatic coupling
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 23)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Justin J. Talbot ◽  
Martin Head-Gordon ◽  
William H. Miller ◽  
Stephen J. Cotton

Sodium hydride (NaH) in the gas phase presents a seemingly simple electronic structure making it a potentially tractable system for the detailed investigation of nonadiabatic molecular dynamics from both computational and experimental standpoints. The single vibrational degree of freedom, as well as the strong nonadiabatic coupling that arises from the excited electronic states taking on considerable ionic character, provides a realistic chemical system to test the accuracy of quasi-classical methods to model population dynamics where the results are directly comparable against quantum mechanical benchmarks. Using a simulated pump-probe experiment, this work presents computational predictions of population transfer through the avoided crossings of NaH via symmetric quasi-classical Meyer-Miller (SQC/MM), Ehrenfest, and exact quantum dynamics on realistic, ab initio potential energy surfaces. The main driving force for population transfer arises from a sharply localized avoided crossing between the C and D singlet sigma potential energy surfaces which causes most of the population to transfer between t=15 and t=30 fs depending on the initially excited vibronic wavepacket. While quantum mechanical effects are expected due to the reduced mass of NaH, predictions of the population dynamics from both the SQC/MM and Ehrenfest models perform remarkably well against the quantum dynamics benchmark. Additionally, an analysis of the vibronic structure in the nonadiabatically coupled regime and predicted transient absorption signatures are presented using a variational eigensolver methodology. The prospects for complementary experimental measurements are also assessed.


2021 ◽  
Author(s):  
Xin Bai ◽  
Xin Guo ◽  
Linjun Wang

Diabatization of one-electron states in flexible molecular aggregates is a great challenge due to the presence of surface crossings between molecular orbital (MO) levels and the complex interaction between MOs of neighboring molecules. In this work, we present an efficient machine learning approach to calculate electronic couplings between quasi-diabatic MOs without the need of nonadiabatic coupling calculations. Using MOs of rigid molecules as references, the MOs that can be directly regarded to be quasi-diabatic in molecular dynamics are selected out, state tracked, and phase corrected. On the basis of this information, artificial neural networks are trained to characterize the structure-dependent onsite energies of quasi-diabatic MOs and the inter-molecular electronic couplings. A representative sequence of DNA is systematically studied as an illustration. Smooth time evolution of electronic couplings in all base pairs is obtained with quasi-diabatic MOs. Especially, our method can calculate electronic couplings between different quasi-diabatic MOs independently, and thus possesses unique advantages in many applications.


2021 ◽  
Author(s):  
Jie Xue ◽  
Jingyi Xu ◽  
Jiajun Ren ◽  
Qingxin Liang ◽  
Qi Ou ◽  
...  

<p>The pursuing of purely organic materials with high-efficiency near-infrared (NIR) emissions is fundamentally limited by the large non-radiative decay rates (<i>k</i><sub>nr</sub>) governed by the energy gap law. Here, we demonstrated a feasible and innovative strategy by employing intermolecular charge-transfer (CT) aggregates (CTA) to realize high-efficiency NIR emissions via nonadiabatic coupling suppression. The formation of CTA engenders intermolecular CT in the excited states; thereby, not only reducing the electronic nonadiabatic coupling and contributing to small <i>k</i><sub>nr</sub> for high-efficiency NIR photoluminescence, but also stabilizing excited-state energies and achieving thermally activated delayed fluorescence for high-efficiency NIR electroluminescence. This work provides new insights into aggregates and opens a new avenue for organic materials to overcome the energy gap law and achieve high-efficiency NIR emissions.<br></p>


2021 ◽  
Author(s):  
Jie Xue ◽  
Jingyi Xu ◽  
Jiajun Ren ◽  
Qingxin Liang ◽  
Qi Ou ◽  
...  

<p>The pursuing of purely organic materials with high-efficiency near-infrared (NIR) emissions is fundamentally limited by the large non-radiative decay rates (<i>k</i><sub>nr</sub>) governed by the energy gap law. Here, we demonstrated a feasible and innovative strategy by employing intermolecular charge-transfer (CT) aggregates (CTA) to realize high-efficiency NIR emissions via nonadiabatic coupling suppression. The formation of CTA engenders intermolecular CT in the excited states; thereby, not only reducing the electronic nonadiabatic coupling and contributing to small <i>k</i><sub>nr</sub> for high-efficiency NIR photoluminescence, but also stabilizing excited-state energies and achieving thermally activated delayed fluorescence for high-efficiency NIR electroluminescence. This work provides new insights into aggregates and opens a new avenue for organic materials to overcome the energy gap law and achieve high-efficiency NIR emissions.<br></p>


Sign in / Sign up

Export Citation Format

Share Document