Is subsequent lower limb injury associated with previous injury? A systematic review and meta-analysis

2017 ◽  
Vol 51 (23) ◽  
pp. 1670-1678 ◽  
Author(s):  
Liam A Toohey ◽  
Michael K Drew ◽  
Jill L Cook ◽  
Caroline F Finch ◽  
Jamie E Gaida
2007 ◽  
Vol 21 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Jason W Busse ◽  
Craig L Jacobs ◽  
Marc F Swiontkowski ◽  
Michael J Bosse ◽  
Mohit Bhandari

2016 ◽  
Vol 64 (1) ◽  

The human foot is a flexible structure characterized by a pronounced medial longitudinal arch (MLA) that compresses and recoils during running. That process is actively driven by the intrinsic foot muscles and requires a proper stability of the MLA. This introduces the concept of foot core stability. Because the intrinsic foot muscles are often neglected by clinicians and researchers, the purpose of this article is to provide some guidelines for incorporating foot core training in prevention or rehabilitation programmes for runners. The intrinsic foot muscles play a key role in postural control and maintain balance during single leg stance by controlling the height of the MLA and the foot pronation. During running, these muscles lengthen eccentrically during the absorption phase and subsequently shorten as the arch recoils during the propulsive phase, functioning in parallel to the plantar fascia. As a consequence, the dysfunction or weakness of the MLA active support may lead to injuries (e.g. plantar fasciopathy, Achilles or Tibialis posterior tendinopathy, metatarsalgia or medial tibial stress syndrome), due to numerous biomechanical cascades and mechanisms. In order to counteract or prevent these impairments, there are two ways for enhancing the foot core stability. Firstly in terms of volitional control of the intrinsic foot muscles, the “short foot exercise” must be practiced. Secondly strengthening sessions using neuromuscular electrical stimulation of these muscles seem to be a promising strategy in order to support the MLA and control the pronation during running. Practically, the foot core strengthening protocol may beneficiate not only the runners affected by excessive pronation related injuries but also those who sustained a long term lower limb injury and may be affected by a detraining process. In addition we warmly recommend integrating this protocol in any lower limb injury prevention programme or strength and conditioning plan for runners.


2020 ◽  
Vol 10 (1) ◽  
pp. 86
Author(s):  
Emanuela Elena Mihai ◽  
Luminita Dumitru ◽  
Ilie Valentin Mihai ◽  
Mihai Berteanu

The purpose of this systematic review and meta-analysis is to evaluate the long-term efficacy of Extracorporeal Shock Wave Therapy (ESWT) on reducing lower limb post-stroke spasticity in adults. A systematic electronic search of PubMed/ MEDLINE, Physiotherapy Evidence Database (PEDro), Scopus, Ovid MEDLINE(R), and search engine of Google Scholar was performed. Publications that ranged from January 2010 to August 2020, published in English, French, Spanish, Portuguese, and Italian language and available as full texts were eligible for inclusion and they were searched without any restrictions of country. The study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and followed the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions. Two authors screened the references, extracted data, and assessed the risk of bias. The primary outcome was spasticity grade mainly assessed by the Modified Ashworth Scale (MAS). Secondary outcomes were passive range of motion (PROM), pain intensity, electrophysiological parameters, gait assessment, and adverse events. A total of seven recent randomized controlled trials (RCTs) were included in the systematic review and meta-analysis, and a beneficial effect on spasticity was found. The high level of evidence presented in this paper showed that ESWT ameliorates spasticity considering the parameters: MAS: standardized mean difference (SMD) = 0.53; 95% confidence interval (95% CI): (0.07–0.99); Modified Tardieu Scale (MTS): SMD = 0.56; 95% CI: (0.01–1.12); Visual Analogue Scale (VAS): SMD = 0.35; 95% CI: (−0.21–0.91); PROM: SMD = 0.69; 95% CI: (0.20–1.19). ESWT presented long-term efficacy on lower limb post-stroke spasticity, reduced pain intensity, and increased range of motion. The effect of this novel and non-invasive therapy was significant and the intervention did not present adverse events, proving a satisfactory safety profile.


Sign in / Sign up

Export Citation Format

Share Document