scholarly journals Downregulation of epithelial sodium channel (ENaC) activity in human airway epithelia after low temperature incubation

2021 ◽  
Vol 8 (1) ◽  
pp. e000861
Author(s):  
Sangya Yadav ◽  
Ciaran A Shaughnessy ◽  
Pamela L Zeitlin ◽  
Preston E Bratcher

IntroductionThe incubation of airway epithelia cells at low temperatures is a common in vitro experimental approach used in the field of cystic fibrosis (CF) research to thermo-stabilise F508del-CFTR and increase its functional expression. Given that the airway epithelium includes numerous ion transporters other than CFTR, we hypothesised that there was an impact of low temperature incubation on CFTR-independent ionoregulatory mechanisms in airway epithelia derived from individuals with and without CF.MethodsAfter differentiation at the air–liquid interface, nasal epithelia were incubated at either 37°C or 29°C (low temperature) for 48 hours prior to analysis in an Ussing chamber.ResultsWhile F508del-CFTR activity was increased after low temperature incubation, activity of CFTR in non-CF epithelia was unchanged. Importantly, cultures incubated at 29°C demonstrated decreased transepithelial potential difference (TEPD) and short-circuit currents (Isc) at baseline. The predominant factor contributing to the reduced baseline TEPD and Isc in 29°C cultures was the reduced activity of the epithelial sodium channel (ENaC), evidenced by a reduced responsiveness to amiloride. This effect was observed in cells derived from both non-CF and CF donors.DiscussionSignificant transcriptional downregulation of ENaC subunits β and γ were observed, which may partially explain the decreased ENaC activity. We speculate that low temperature incubation may be a useful experimental paradigm to reduce ENaC activity in in vitro epithelial cultures.

2003 ◽  
Vol 284 (2) ◽  
pp. C404-C414 ◽  
Author(s):  
Diego Alvarez de la Rosa ◽  
Cecilia M. Canessa

The purpose of this study was to examine the role of the serum- and glucocorticoid-induced kinase (SGK) in the activation of the epithelial sodium channel (ENaC) by aldosterone, arginine vasopressin (AVP), and insulin. We used a tetracycline-inducible system to control the expression of wild-type (SGK[Formula: see text]), constitutively active (S425D mutation; SGK[Formula: see text]), or inactive (K130M mutation; SGK[Formula: see text]) SGK in A6 cells independently of hormonal stimulation. The effect of SGK expression on ENaC activity was monitored by measuring transepithelial amiloride-sensitive short-circuit current ( I sc) of transfected A6 cell lines. Expression of SGK[Formula: see text] or SGK[Formula: see text] and aldosterone stimulation have additive effects on I sc. Although SGK could play some role in the aldosterone response, our results suggest that other mechanisms take place. SGK[Formula: see text] abrogates the responses to AVP and insulin; hence, in the signaling pathways of these hormones there is a shared step that is stimulated by SGK. Because AVP and insulin induce fusion of vesicles to the apical membrane, our results support the notion that SGK promotes incorporation of channels in the apical membrane.


2010 ◽  
Vol 299 (4) ◽  
pp. F854-F861 ◽  
Author(s):  
Christopher J. Passero ◽  
Marcelo D. Carattino ◽  
Ossama B. Kashlan ◽  
Mike M. Myerburg ◽  
Rebecca P. Hughey ◽  
...  

Proteases activate the epithelial sodium channel (ENaC) by cleaving the large extracellular domains of the α- and γ-subunits and releasing peptides with inhibitory properties. Furin and prostasin activate mouse ENaC by cleaving the γ-subunit at sites flanking a 43 residue inhibitory tract (γE144-K186). To determine whether there is a minimal inhibitory region within this 43 residue tract, we generated serial deletions in the inhibitory tract of the γ-subunit in channels resistant to cleavage by furin and prostasin. We found that partial or complete deletion of a short segment in the γ-subunit, R158-N171, enhanced channel activity. Synthetic peptides overlapping this segment in the γ-subunit further identified a key 11-mer tract, R158-F168 (RFLNLIPLLVF), which inhibited wild-type ENaC expressed in Xenopus laevis oocytes, and endogenous channels in mpkCCD cells and human airway epithelia. Further studies with amino acid-substituted peptides defined residues that are required for inhibition in this key 11-mer tract. The presence of the native γ inhibitory tract in ENaC weakened the intrinsic binding constant of the 11-mer peptide inhibitor, suggesting that the γ inhibitory tract and the 11-mer peptide interact at overlapping sites within the channel.


2006 ◽  
Vol 290 (2) ◽  
pp. F279-F288 ◽  
Author(s):  
Wusheng Yan ◽  
Laurence Suaud ◽  
Thomas R. Kleyman ◽  
Ronald C. Rubenstein

The A663T polymorphism of the α-subunit of the human epithelial sodium channel (hENaC) increases the functional and surface expression of αβγ-hENaC in Xenopus laevis oocytes. The context of this residue in the COOH terminus of α-hENaC is important for this effect, as a homologous change in murine ENaC (mENaC), A692T, does not alter functional and surface expression of mENaC. Query of a phosphoprotein database suggested that the α-T663 residue might be phosphorylated by PKCδ. General inhibition of PKC with calphostin C decreased the functional and surface expression of αT663-hENaC and not αA663-hENaC, and was without effect on αA692-mENaC, αT692-mENaC, and a chimeric m(1–678)/h(650–669)αT663, mβγ-ENaC. These data suggest that residues outside of the α-hENaC COOH terminus are important for modulation of αT663-hENaC trafficking by PKC. In contrast, expression of PKCδ decreased the functional and surface expression of αT663-hENaC and the functional expression of m(1–678)/h(650–669)αT663, mβγ-ENaC, and was without effect on αA663-hENaC, αA692-mENaC, or αT692-mENaC. PKCδ did not phosphorylate the COOH terminus of either αT663-hENaC or αA663-hENaC in vitro, suggesting that it acts indirectly to regulate hENaC trafficking. αT663-hENaC was retrieved from the oocyte membrane more slowly than αA663-hENaC, and calphostin C increased the rate of αT663-hENaC removal from the oocyte membrane to a rate similar to that of αA663-hENaC. In contrast, PKCδ did not alter the rate of removal of αT663-hENaC from the oocyte membrane, suggesting that PKCδ altered rates of αT663-hENaC biosynthesis and/or delivery to the plasma membrane. These data are consistent with PKC isoform-specific effects on the intracellular trafficking of αT663- vs. αA663-hENaC.


2007 ◽  
Vol 293 (3) ◽  
pp. F868-F876 ◽  
Author(s):  
Wusheng Yan ◽  
Lynn Spruce ◽  
Michael M. Rosenblatt ◽  
Thomas R. Kleyman ◽  
Ronald C. Rubenstein

The A663T polymorphism of the α-subunit of the human epithelial sodium channel (hENaC) increases the functional and surface expression of αβγ-hENaC in Xenopus laevis oocytes, and the context of this residue in the COOH terminus of α-hENaC is important for this effect. Query of a phosphoprotein database suggested that the α-T663 residue of hENaC might be a substrate for phosphorylation by casein kinase 1 (CK1). We tested the hypotheses that phosphorylation of α-T663-hENaC by CK1 would regulate the increased functional and surface expression of α-T663-hENaC vs. α-A663-hENaC in oocytes. General inhibition of CK1 with IC261 decreased the functional and surface expression of α-T663-hENaC, but not α-A663-hENaC. This decrease in α-T663-hENaC functional expression resulted from reduced delivery of α-T663-hENaC to the oocyte membrane. IC261 also inhibited the functional expression of α-T692-mENaC and a chimeric m(1-678)/h(650-669)α-T663, mβγ ENaC, but not α-A692-mENaC or m(1-678)/h(650-669)α-A663, mβγ ENaC. These data suggest that additional residues outside of the α-hENaC COOH terminus are important for modulation of α-T663-hENaC trafficking by CK1. Overexpression of CK1α did not alter functional expression of α-T663-hENaC. In contrast, modest overexpression of CK1δ enhanced, whereas higher levels of CK1δ overexpression inhibited α-T663-hENaC functional expression. CK1 did not phosphorylate the COOH terminus of either α-T663-hENaC or α-A663-hENaC in vitro. These data suggest that CK1, and perhaps specifically CK1δ, regulates the intracellular trafficking of the α-A663T functional polymorphism of hENaC indirectly by altering the rate of α-T663-hENaC biosynthesis and/or delivery to the plasma membrane.


1994 ◽  
Vol 267 (6) ◽  
pp. C1682-C1690 ◽  
Author(s):  
C. M. Canessa ◽  
A. M. Merillat ◽  
B. C. Rossier

The highly selective amiloride-sensitive epithelial sodium channel is formed of three homologous subunits termed alpha-, beta-, and gamma-rENaC. Each subunit has two putative transmembrane domains (M1 and M2), yielding a protein with a large (approximately 50 kDa) hydrophilic loop (between M1 and M2) and short hydrophilic NH2- and COOH-termini (9 and 10 kDa). All three subunits are glycosylated in a cell-free translation assay, demonstrating that they share in vitro a common pattern of membrane insertion. The membrane topology of the alpha-rENaC subunit in intact cells was studied in Xenopus laevis oocytes. We demonstrate that 1) all six potential N-linked glycosylation sites (N190, N259, N320, N339, N424, and N538) of the large hydrophilic loop are used in intact cells; 2) the glycosylation of alpha-rENaC does not play a significant role in the functional expression of the channel; and 3) the two hydrophobic domains M1 (A109-F131) and M2 (S588-L612) serve in intact cells as start- and stop-transfer signals, respectively. We conclude that alpha-rENaC spans the membrane twice with the short NH2- and COOH-terminal ends on the cytoplasmic side and a large hydrophilic loop in the extracellular space.


Sign in / Sign up

Export Citation Format

Share Document