02 Brain cancer prediction using machine learning methods and high-throughput molecular data

2017 ◽  
Vol 65 (7) ◽  
pp. A1.2-A1 ◽  
Author(s):  
BS Ma ◽  
Q Chang ◽  
Y Geng ◽  
GH Liu ◽  
H Dong ◽  
...  
2006 ◽  
Vol 2 ◽  
pp. 117693510600200 ◽  
Author(s):  
Joseph A. Cruz ◽  
David S. Wishart

Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on “older” technologies such artificial neural networks (ANNs) instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15–25%) improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.


Author(s):  
M. Maimaitijiang ◽  
V. Sagan ◽  
S. Bhadra ◽  
C. Nguyen ◽  
T. C. Mockler ◽  
...  

Abstract. Canopy cover is a key agronomic variable for understanding plant growth and crop development status. Estimation of canopy cover rapidly and accurately through a fully automated manner is significant with respect to high throughput plant phenotyping. In this work, we propose a simple, robust and fully automated approach, namely a rule-based method, that leverages the unique spectral pattern of green vegetation at visible (VIS) and near-infrared red (NIR) spectra regions to distinguish the green vegetation from background (i.e., soil, plant residue, non-photosynthetic vegetation leaves etc.), and then derive canopy cover. The proposed method was applied to high-resolution hyperspectral and multispectral imagery collected from gantry-based scanner and Unmanned Aerial Vehicle (UAV) platforms to estimate canopy cover. Additionally, machine learning methods, i.e., Support Vector Machine (SVM) and Random Forest (RF) were also employed as bench mark methods. The results show that: the rule-based method demonstrated promising classification accuracies that are comparable to SVM and RF for both hyperspectral and multispectral datasets. Although the rule-based method is more sensitive to mixed pixels and shaded canopy region, which potentially resulted in classification errors and underestimation of canopy cover in some cases; it showed better performance to detect smaller leaves than SVM and RF. Most importantly, the rule-based method substantially outperformed machine learning methods with respect to processing speed, indicating its greater potential for high-throughput plant phenotyping applications.


Sign in / Sign up

Export Citation Format

Share Document