scholarly journals Applications of Machine Learning in Cancer Prediction and Prognosis

2006 ◽  
Vol 2 ◽  
pp. 117693510600200 ◽  
Author(s):  
Joseph A. Cruz ◽  
David S. Wishart

Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on “older” technologies such artificial neural networks (ANNs) instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15–25%) improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.

2018 ◽  
Vol 7 (1.7) ◽  
pp. 201
Author(s):  
K Jayanthi ◽  
C Mahesh

Machine learning enables computers to help humans in analysing knowledge from large, complex data sets. One of the complex data is genetics and genomic data which needs to analyse various set of functions automatically by the computers. Hope this machine learning methods can provide more useful for making these data for further usage like gene prediction, gene expression, gene ontology, gene finding, gene editing and etc. The purpose of this study is to explore some machine learning applications and algorithms to genetic and genomic data. At the end of this study we conclude the following topics classifications of machine learning problems: supervised, unsupervised and semi supervised, which type of method is suitable for various problems in genomics, applications of machine learning and future views of machine learning in genomics.


2019 ◽  
Author(s):  
Leila Mirsadeghi ◽  
Ali Mohammad Banaei-Moghaddam ◽  
Seyed Reza Beh-Afarin ◽  
Reza Haji Hosseini ◽  
Kaveh Kavousi

Abstract Background: Ensemble methods are supervised learning approaches that integrate different types of data or multiple individual classifiers. It has been shown that these methods can improve professional performance.Methods: This study is an attempt to provide an in-depth review on 45 most relevant articles and aims to introduce 42 ensemble classifier (EC) machine learning methods used for the detection of 18 different types of cancer. Compared to other types of cancer, breast cancer, and the 22 ensemble methods introduced for its identification, is extensively investigated. The purpose of this study is to identify, map, and analyze the current academic discourse on EC machine learning methods in order to: 1. identify overarching themes emerging from empirical studies as regards EC methods, 2. determine their input data and decision-making strategies, and 3. evaluate relevant statistical procedures.Results: By comparing various approaches, we can introduce Relevance Vector Machine (RVM)-based ensemble learning method that can provide optimal solutions for problems such as curse the dimensionality and high-dimensionality of feature space without missing data values.Conclusions: To obtain robust performance and achieve better results, it is tactfully suggested to use multi-omics data integration, which has demonstrated to identify cancers and their subtypes more efficiently.


2019 ◽  
Author(s):  
Kaveh Kavousi ◽  
Leila Mirsadeghi ◽  
Reza Haji Hosseini ◽  
Ali Mohammad Banaei-Moghaddam ◽  
Seyed Reza Beh-Afarin

Abstract Background Ensemble methods are supervised learning approaches that integrate different types of data or multiple individual classifiers. It has been shown that these methods can improve professional performance. Methods This study is an attempt to provide an in-depth review on 45 most relevant articles and aims to introduce 42 ensemble classifier (EC) machine learning methods used for the detection of 18 different types of cancer. Compared to other types of cancer, breast cancer, and the 22 ensemble methods introduced for its identification, is extensively investigated. The purpose of this study was to identify, map, and analyze the current academic discourse on EC machine learning methods in order to: 1. identify overarching themes emerging from empirical studies regarding EC methods, 2. determine their input data and decision-making strategies, and 3. evaluate relevant statistical procedures. Results By comparing various approaches, we can introduce Relevance Vector Machine (RVM)-based ensemble learning method that can provide optimal solutions for problems such as curse the dimensionality and high-dimensionality of feature space without missing data values. Conclusions To obtain robust performance and achieve better results, it is tactfully suggested to use multi-omics data integration, which has demonstrated to identify cancers and their subtypes more efficiently.


2020 ◽  
Vol 59 (10) ◽  
pp. 1671-1689
Author(s):  
Trey McNeely ◽  
Ann B. Lee ◽  
Kimberly M. Wood ◽  
Dorit Hammerling

AbstractTropical cyclones (TCs) rank among the most costly natural disasters in the United States, and accurate forecasts of track and intensity are critical for emergency response. Intensity guidance has improved steadily but slowly, as processes that drive intensity change are not fully understood. Because most TCs develop far from land-based observing networks, geostationary satellite imagery is critical to monitor these storms. However, these complex data can be challenging to analyze in real time, and off-the-shelf machine-learning algorithms have limited applicability on this front because of their “black box” structure. This study presents analytic tools that quantify convective structure patterns in infrared satellite imagery for overocean TCs, yielding lower-dimensional but rich representations that support analysis and visualization of how these patterns evolve during rapid intensity change. The proposed feature suite targets the global organization, radial structure, and bulk morphology (ORB) of TCs. By combining ORB and empirical orthogonal functions, we arrive at an interpretable and rich representation of convective structure patterns that serve as inputs to machine-learning methods. This study uses the logistic lasso, a penalized generalized linear model, to relate predictors to rapid intensity change. Using ORB alone, binary classifiers identifying the presence (vs absence) of such intensity-change events can achieve accuracy comparable to classifiers using environmental predictors alone, with a combined predictor set improving classification accuracy in some settings. More complex nonlinear machine-learning methods did not perform better than the linear logistic lasso model for current data.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5322
Author(s):  
Stanly Jayaprakash ◽  
Manikanda Devarajan Nagarajan ◽  
Rocío Pérez de Prado ◽  
Sugumaran Subramanian ◽  
Parameshachari Bidare Divakarachari

Nowadays, many organizations and individual users are employing cloud services extensively due to their efficiency, reliability and low cost. A key aspect for cloud data centers is to achieve management methods to reduce energy consumption, increasing the profit and reducing the environmental impact, which is critical in the deployment of leading-edge technologies today such as blockchain and digital finances, IoT, online gaming and video streaming. In this review, various clustering, optimization, and machine learning methods used in cloud resource allocation to increase the energy efficiency and performance are analyzed, compared and classified. Specifically, on the one hand, we discuss how clustering methods and optimization techniques are widely applied in energy management due to their capacity to provide solutions for energy consumption reduction. On the other hand, we study how multi-objective optimization methods focus on reducing energy consumption as well as service level agreement (SLA) violation, and improving quality of services (QoS) simultaneously. Also, we discuss how optimization methods such as the firefly algorithm, whale optimization algorithm (WOA), particle swarm optimization (PSO) and genetic algorithm (GA) provide the highest performance in the field. Moreover, we analyze how machine learning methods such as deep neural network (DNN), random forest, and support vector machine (SVM) are applied to the prediction of energy consumption in the cloud, showing an accurate performance in this prediction. Nevertheless, we study how the existing methods still have limitations of low convergence, trap into local optima and overfitting.


Sign in / Sign up

Export Citation Format

Share Document