On a Proof by Petrov of the Stability of Plane Couette Flow and Plane Poiseuille Flow

1969 ◽  
Vol 17 (4) ◽  
pp. 765-768 ◽  
Author(s):  
A. P. Gallagher
2020 ◽  
Vol 52 (1) ◽  
pp. 343-367 ◽  
Author(s):  
Laurette S. Tuckerman ◽  
Matthew Chantry ◽  
Dwight Barkley

Experiments and numerical simulations have shown that turbulence in transitional wall-bounded shear flows frequently takes the form of long oblique bands if the domains are sufficiently large to accommodate them. These turbulent bands have been observed in plane Couette flow, plane Poiseuille flow, counter-rotating Taylor–Couette flow, torsional Couette flow, and annular pipe flow. At their upper Reynolds number threshold, laminar regions carve out gaps in otherwise uniform turbulence, ultimately forming regular turbulent–laminar patterns with a large spatial wavelength. At the lower threshold, isolated turbulent bands sparsely populate otherwise laminar domains, and complete laminarization takes place via their disappearance. We review results for plane Couette flow, plane Poiseuille flow, and free-slip Waleffe flow, focusing on thresholds, wavelengths, and mean flows, with many of the results coming from numerical simulations in tilted rectangular domains that form the minimal flow unit for the turbulent–laminar bands.


2013 ◽  
Vol 735 ◽  
Author(s):  
M. Nagata ◽  
K. Deguchi

AbstractTwo new families of exact coherent states are found in plane Poiseuille flow. They are obtained from the stationary and the travelling-wave mirror-symmetric solutions in plane Couette flow by a homotopy continuation. They are characterized by the mirror symmetry inherited from those continued solutions in plane Couette flow. The first family arises from a saddle-node bifurcation and the second family bifurcates by breaking the top–bottom symmetry of the first family. We find that both families exist below the minimum saddle-node-point Reynolds number known to date (Waleffe, Phys. Fluids, vol. 15, 2003, pp. 1517–1534).


1983 ◽  
Vol 50 (4b) ◽  
pp. 983-991 ◽  
Author(s):  
R. C. DiPrima ◽  
J. T. Stuart

Theoretical and experimental developments for the stability and transition of plane Poiseuille flow and for Couette flow between rotating concentric cylinders are reviewed. The paper concludes with brief comments on the stability of Hagen-Poiseuille flow in a pipe and brief comments on the stability of slowly varying flows.


1967 ◽  
Vol 27 (2) ◽  
pp. 337-352 ◽  
Author(s):  
Chia-Shun Yih

The principal aim of this paper is to show that the variation of viscosity in a fluid can cause instability. Plane Couette-Poiseuille flow of two superposed layers of fluids of different viscosities between two horizontal plates is considered, and it is found that both plane Poiseuille flow and plane Couette flow can be unstable, however small the Reynolds number is. The unstable modes are in the neighbourhood of a hidden neutral mode for the case of a single fluid, which is entirely ignored in the usual theory of hydrodynamic stability, and are brought out by the viscosity stratification.


2021 ◽  
Vol 922 (2) ◽  
pp. 161
Author(s):  
Subham Ghosh ◽  
Banibrata Mukhopadhyay

Abstract We explore the effect of forcing on the linear shear flow or plane Couette flow, which is also the background flow in the very small region of the Keplerian accretion disk. We show that depending on the strength of forcing and boundary conditions suitable for the systems under consideration, the background plane shear flow, and hence the accretion disk velocity profile, is modified into parabolic flow, which is a plane Poiseuille flow or Couette–Poiseuille flow, depending on the frame of reference. In the presence of rotation, the plane Poiseuille flow becomes unstable at a smaller Reynolds number under pure vertical as well as three-dimensional perturbations. Hence, while rotation stabilizes the plane Couette flow, the same destabilizes the plane Poiseuille flow faster and hence the forced local accretion disk. Depending on the various factors, when the local linear shear flow becomes a Poiseuille flow in the shearing box due to the presence of extra force, the flow becomes unstable even for Keplerian rotation, and hence turbulence will ensue. This helps to resolve the long-standing problem of subcritical transition to turbulence in hydrodynamic accretion disks and the laboratory plane Couette flow.


1998 ◽  
Vol 358 ◽  
pp. 357-378 ◽  
Author(s):  
M. NAGATA

The stability of nonlinear tertiary solutions in rotating plane Couette flow is examined numerically. It is found that the tertiary flows, which bifurcate from two-dimensional streamwise vortex flows, are stable within a certain range of the rotation rate when the Reynolds number is relatively small. The stability boundary is determined by perturbations which are subharmonic in the streamwise direction. As the Reynolds number is increased, the rotation range for the stable tertiary motions is destroyed gradually by oscillatory instabilities. We expect that the tertiary flow is overtaken by time-dependent motions for large Reynolds numbers. The results are compared with the recent experimental observation by Tillmark & Alfredsson (1996).


1994 ◽  
Vol 258 ◽  
pp. 131-165 ◽  
Author(s):  
Peter W. Duck ◽  
Gordon Erlebacher ◽  
M. Yousuff Hussaini

The linear stability of compressible plane Couette flow is investigated. The appropriate basic velocity and temperature distributions are perturbed by a small-amplitude normal-mode disturbance. The full small-amplitude disturbance equations are solved numerically at finite Reynolds numbers, and the inviscid limit of these equations is then investigated in some detail. It is found that instabilities can occur, although the corresponding growth rates are often quite small; the stability characteristics of the flow are quite different from unbounded flows. The effects of viscosity are also calculated, asymptotically, and shown to have a stabilizing role in all the cases investigated. Exceptional regimes to the problem occur when the wave speed of the disturbances approaches the velocity of either of the walls, and these regimes are also analysed in some detail. Finally, the effect of imposing radiation-type boundary conditions on the upper (moving) wall (in place of impermeability) is investigated, and shown to yield results common to both bounded and unbounded flows.


Sign in / Sign up

Export Citation Format

Share Document