Qualitative Theory of the Cauchy Problem for a One-Step Reaction Model on Bounded Domains

1991 ◽  
Vol 22 (2) ◽  
pp. 379-391 ◽  
Author(s):  
Joel D. Avrin
Author(s):  
Vladimir I. Uskov

We consider a second-order algebro-differential equation. Equations and systems of second-order differential equations describe the operation of an electronic triode circuit with feedback, rotation of a rigid body with a cavity, reading information from a disk, etc. The highest derivative is preceded by an irreversible operator. This is a Fredholm operator with index zero, kernel of arbitrary dimension, and Jordan chains of arbitrary lengths. Equations with irreversible operators at the highest derivative are called algebro-differential. In this case, the solution to the problem exists under certain conditions on the components of the desired function. To solve the equation with respect to the derivative, the method of cascade splitting of the equation is used, which consists in the stepwise splitting of the equation into equations in subspaces of decreasing dimensions. Cases of one-step and two-step splitting are considered. The splitting uses the result on the solution of a linear equation with Fredholm operator. In each case, the corresponding result is formulated as a theorem. To illustrate the result obtained in the case of one-step splitting, an illustrative example of the Cauchy problem is given.


2006 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
J. Awrejcewicz ◽  
V. Krysko ◽  
N. Saveleva

Complex vibrations of closed cylindrical shells of circular cross section and finite length subjected to nonuniform sign-changeable external load in the frame of classical nonlinear theory are studied. A transition from partial differential equations to ordinary differential equations (Cauchy problem) is carried out using the higher order Bubnov–Galerkin’s approach and Fourier’s representation. On the other hand, the Cauchy problem is solved using the fourth-order Runge–Kutta method. Results are analyzed owing to the application of nonlinear dynamics and qualitative theory of differential equations. The present work is devoted to the analysis of influence of the system dynamics of the following parameters: length of pressure width φ0, relative linear shell dimension λ=L∕R, and frequency ωp and amplitude q0 of external transversal load. Some new scenarios of vibrations of closed cylindrical shells exhibiting a transition from harmonic to chaotic vibrations are illustrated and studied.


2003 ◽  
Vol 8 (1) ◽  
pp. 61-75
Author(s):  
V. Litovchenko

The well-posedness of the Cauchy problem, mentioned in title, is studied. The main result means that the solution of this problem is usual C∞ - function on the space argument, if the initial function is a real functional on the conjugate space to the space, containing the fundamental solution of the corresponding problem. The basic tool for the proof is the functional analysis technique.


Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1287-1293 ◽  
Author(s):  
Zujin Zhang ◽  
Dingxing Zhong ◽  
Shujing Gao ◽  
Shulin Qiu

In this paper, we consider the Cauchy problem for the 3D MHD fluid passing through the porous medium, and provide some fundamental Serrin type regularity criteria involving the velocity or its gradient, the pressure or its gradient. This extends and improves [S. Rahman, Regularity criterion for 3D MHD fluid passing through the porous medium in terms of gradient pressure, J. Comput. Appl. Math., 270 (2014), 88-99].


2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document