Stopping Criteria for Iterative Solvers

1992 ◽  
Vol 13 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Mario Arioli ◽  
Iain Duff ◽  
Daniel Ruiz
Author(s):  
Zheng Zhou ◽  
Erik Saule ◽  
Hasan Metin Aktulga ◽  
Chao Yang ◽  
Esmond G. Ng ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
B. Borsos ◽  
János Karátson

Abstract The goal of this paper is to present various types of iterative solvers: gradient iteration, Newton’s method and a quasi-Newton method, for the finite element solution of elliptic problems arising in Gao type beam models (a geometrical type of nonlinearity, with respect to the Euler–Bernoulli hypothesis). Robust behaviour, i.e., convergence independently of the mesh parameters, is proved for these methods, and they are also tested with numerical experiments.


Author(s):  
Alexander Haberl ◽  
Dirk Praetorius ◽  
Stefan Schimanko ◽  
Martin Vohralík

AbstractWe consider a second-order elliptic boundary value problem with strongly monotone and Lipschitz-continuous nonlinearity. We design and study its adaptive numerical approximation interconnecting a finite element discretization, the Banach–Picard linearization, and a contractive linear algebraic solver. In particular, we identify stopping criteria for the algebraic solver that on the one hand do not request an overly tight tolerance but on the other hand are sufficient for the inexact (perturbed) Banach–Picard linearization to remain contractive. Similarly, we identify suitable stopping criteria for the Banach–Picard iteration that leave an amount of linearization error that is not harmful for the residual a posteriori error estimate to steer reliably the adaptive mesh-refinement. For the resulting algorithm, we prove a contraction of the (doubly) inexact iterates after some amount of steps of mesh-refinement/linearization/algebraic solver, leading to its linear convergence. Moreover, for usual mesh-refinement rules, we also prove that the overall error decays at the optimal rate with respect to the number of elements (degrees of freedom) added with respect to the initial mesh. Finally, we prove that our fully adaptive algorithm drives the overall error down with the same optimal rate also with respect to the overall algorithmic cost expressed as the cumulated sum of the number of mesh elements over all mesh-refinement, linearization, and algebraic solver steps. Numerical experiments support these theoretical findings and illustrate the optimal overall algorithmic cost of the fully adaptive algorithm on several test cases.


Author(s):  
Giacomo Albi ◽  
Lorenzo Pareschi

AbstractWe consider the construction of semi-implicit linear multistep methods that can be applied to time-dependent PDEs where the separation of scales in additive form, typically used in implicit-explicit (IMEX) methods, is not possible. As shown in Boscarino et al. (J. Sci. Comput. 68: 975–1001, 2016) for Runge-Kutta methods, these semi-implicit techniques give a great flexibility, and allow, in many cases, the construction of simple linearly implicit schemes with no need of iterative solvers. In this work, we develop a general setting for the construction of high order semi-implicit linear multistep methods and analyze their stability properties for a prototype linear advection-diffusion equation and in the setting of strong stability preserving (SSP) methods. Our findings are demonstrated on several examples, including nonlinear reaction-diffusion and convection-diffusion problems.


Sign in / Sign up

Export Citation Format

Share Document