scholarly journals Counting list homomorphisms from graphs of bounded treewidth: tight complexity bounds

2022 ◽  
pp. 431-458
Author(s):  
Jacob Focke ◽  
Dániel Marx ◽  
Paweł Rzążewski
Algorithmica ◽  
2021 ◽  
Author(s):  
Édouard Bonnet ◽  
Nidhi Purohit

AbstractA resolving set S of a graph G is a subset of its vertices such that no two vertices of G have the same distance vector to S. The Metric Dimension problem asks for a resolving set of minimum size, and in its decision form, a resolving set of size at most some specified integer. This problem is NP-complete, and remains so in very restricted classes of graphs. It is also W[2]-complete with respect to the size of the solution. Metric Dimension has proven elusive on graphs of bounded treewidth. On the algorithmic side, a polynomial time algorithm is known for trees, and even for outerplanar graphs, but the general case of treewidth at most two is open. On the complexity side, no parameterized hardness is known. This has led several papers on the topic to ask for the parameterized complexity of Metric Dimension with respect to treewidth. We provide a first answer to the question. We show that Metric Dimension parameterized by the treewidth of the input graph is W[1]-hard. More refinedly we prove that, unless the Exponential Time Hypothesis fails, there is no algorithm solving Metric Dimension in time $$f(\text {pw})n^{o(\text {pw})}$$ f ( pw ) n o ( pw ) on n-vertex graphs of constant degree, with $$\text {pw}$$ pw the pathwidth of the input graph, and f any computable function. This is in stark contrast with an FPT algorithm of Belmonte et al. (SIAM J Discrete Math 31(2):1217–1243, 2017) with respect to the combined parameter $$\text {tl}+\Delta$$ tl + Δ , where $$\text {tl}$$ tl is the tree-length and $$\Delta$$ Δ the maximum-degree of the input graph.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-35
Author(s):  
Muhammad Anis Uddin Nasir ◽  
Cigdem Aslay ◽  
Gianmarco De Francisci Morales ◽  
Matteo Riondato

“Perhaps he could dance first and think afterwards, if it isn’t too much to ask him.” S. Beckett, Waiting for Godot Given a labeled graph, the collection of -vertex induced connected subgraph patterns that appear in the graph more frequently than a user-specified minimum threshold provides a compact summary of the characteristics of the graph, and finds applications ranging from biology to network science. However, finding these patterns is challenging, even more so for dynamic graphs that evolve over time, due to the streaming nature of the input and the exponential time complexity of the problem. We study this task in both incremental and fully-dynamic streaming settings, where arbitrary edges can be added or removed from the graph. We present TipTap , a suite of algorithms to compute high-quality approximations of the frequent -vertex subgraphs w.r.t. a given threshold, at any time (i.e., point of the stream), with high probability. In contrast to existing state-of-the-art solutions that require iterating over the entire set of subgraphs in the vicinity of the updated edge, TipTap operates by efficiently maintaining a uniform sample of connected -vertex subgraphs, thanks to an optimized neighborhood-exploration procedure. We provide a theoretical analysis of the proposed algorithms in terms of their unbiasedness and of the sample size needed to obtain a desired approximation quality. Our analysis relies on sample-complexity bounds that use Vapnik–Chervonenkis dimension, a key concept from statistical learning theory, which allows us to derive a sufficient sample size that is independent from the size of the graph. The results of our empirical evaluation demonstrates that TipTap returns high-quality results more efficiently and accurately than existing baselines.


Algorithmica ◽  
2021 ◽  
Author(s):  
Giordano Da Lozzo ◽  
David Eppstein ◽  
Michael T. Goodrich ◽  
Siddharth Gupta

AbstractFor a clustered graph, i.e, a graph whose vertex set is recursively partitioned into clusters, the C-Planarity Testing problem asks whether it is possible to find a planar embedding of the graph and a representation of each cluster as a region homeomorphic to a closed disk such that (1) the subgraph induced by each cluster is drawn in the interior of the corresponding disk, (2) each edge intersects any disk at most once, and (3) the nesting between clusters is reflected by the representation, i.e., child clusters are properly contained in their parent cluster. The computational complexity of this problem, whose study has been central to the theory of graph visualization since its introduction in 1995 [Feng, Cohen, and Eades, Planarity for clustered graphs, ESA’95], has only been recently settled [Fulek and Tóth, Atomic Embeddability, Clustered Planarity, and Thickenability, to appear at SODA’20]. Before such a breakthrough, the complexity question was still unsolved even when the graph has a prescribed planar embedding, i.e, for embedded clustered graphs. We show that the C-Planarity Testing problem admits a single-exponential single-parameter FPT (resp., XP) algorithm for embedded flat (resp., non-flat) clustered graphs, when parameterized by the carving-width of the dual graph of the input. These are the first FPT and XP algorithms for this long-standing open problem with respect to a single notable graph-width parameter. Moreover, the polynomial dependency of our FPT algorithm is smaller than the one of the algorithm by Fulek and Tóth. In particular, our algorithm runs in quadratic time for flat instances of bounded treewidth and bounded face size. To further strengthen the relevance of this result, we show that an algorithm with running time O(r(n)) for flat instances whose underlying graph has pathwidth 1 would result in an algorithm with running time O(r(n)) for flat instances and with running time $$O(r(n^2) + n^2)$$ O ( r ( n 2 ) + n 2 ) for general, possibly non-flat, instances.


Author(s):  
Mareike Dressler ◽  
Adam Kurpisz ◽  
Timo de Wolff

AbstractVarious key problems from theoretical computer science can be expressed as polynomial optimization problems over the boolean hypercube. One particularly successful way to prove complexity bounds for these types of problems is based on sums of squares (SOS) as nonnegativity certificates. In this article, we initiate optimization problems over the boolean hypercube via a recent, alternative certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for SOS-based certificates remain valid: First, for polynomials, which are nonnegative over the n-variate boolean hypercube with constraints of degree d there exists a SONC certificate of degree at most $$n+d$$ n + d . Second, if there exists a degree d SONC certificate for nonnegativity of a polynomial over the boolean hypercube, then there also exists a short degree d SONC certificate that includes at most $$n^{O(d)}$$ n O ( d ) nonnegative circuit polynomials. Moreover, we prove that, in opposite to SOS, the SONC cone is not closed under taking affine transformation of variables and that for SONC there does not exist an equivalent to Putinar’s Positivstellensatz for SOS. We discuss these results from both the algebraic and the optimization perspective.


2022 ◽  
Vol 125 ◽  
pp. 129-148
Author(s):  
Emilio Di Giacomo ◽  
Giuseppe Liotta ◽  
Fabrizio Montecchiani
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document