scholarly journals A Partial Differential Equation for the Mean--Return-Time Phase of Planar Stochastic Oscillators

2020 ◽  
Vol 80 (1) ◽  
pp. 422-447
Author(s):  
Alexander Cao ◽  
Benjamin Lindner ◽  
Peter J. Thomas
2002 ◽  
Vol 466 ◽  
pp. 113-147 ◽  
Author(s):  
HSIEN-HUNG WEI ◽  
DAVID S. RUMSCHITZKI

This paper examines the core–annular flow of two immiscible fluids in a straight circular tube with a small corrugation, in the limit where the ratio ε of the mean undisturbed annulus thickness to the mean core radius and the corrugation (characterized by the parameter σ) are both asymptotically small and where the surface tension is small. It is motivated by the problems of liquid–liquid displacement in irregular rock pores such as occur in secondary oil recovery and in the evolution of the liquid film lining the bronchii in the lungs whose diameters vary over different generations of branching. We investigate the asymptotic base flow in this limit and consider the linear stability of its leading order (in the corrugation parameter) solution. For the chosen scalings of the non-dimensional parameters the core's base flow slaves that of the annulus. The equation governing the leading-order interfacial position for a given wall corrugation function shows a competition between shear and capillarity. The former tends to align the interface shape with that of the wall and the latter tends to introduce a phase shift, which can be of either sign depending on whether the circumferential or the longitudinal component of capillarity dominates. The asymptotic linear stability of this leading-order base flow reduces to a single partial differential equation with non-constant coefficients deriving from the non-uniform base flow for the time evolution of an interfacial disturbance. Examination of a single mode k wall function allows the use of Floquet theory to analyse this equation. Direct numerical solutions of the above partial differential equation agree with the predictions of the Floquet analysis. The resulting spectrum is periodic in α- space, α being the disturbance wavenumber space. The presence of a small corrugation not only modifies (at order σ2) the primary eigenvalue of the system. In addition, short-wave order-one disturbances that would be stabilized flowing to capillarity in the absence of corrugation can, in the presence of corrugation and over time scales of order ln(1/σ), excite higher wall harmonics (α±nk) leading to the growth of unstable long waves. Similar results obtain for more complicated wall shape functions. The main result is that a small corrugation makes a core–annular flow unstable to far more disturbances than would destabilize the same uncorrugated flow system. A companion paper examines that competition between this added destabilization due to pore corrugation with the wave steepening and stabilization in the weakly nonlinear regime.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 417-422 ◽  
Author(s):  
T.Y. Pai ◽  
C.F. Ouyang ◽  
Y.C. Liao ◽  
H.G. Leu

Oxygen diffused to water in gravity sewer pipes was studied in a 21 m long, 0.15 m diameter model sewer. At first, the sodium sulfide was added into the clean water to deoxygenate, then the pump was started to recirculate the water and the deoxygenated water was reaerated. The dissolved oxygen microelectrode was installed to measure the dissolved oxygen concentrations varied with flow velocity, time and depth. The dissolved oxygen concentration profiles were constructed and observed. The partial differential equation diffusion model that considered Fick's law including the molecular diffusion term and eddy diffusion term were derived. The analytic solution of the partial differential equation was used to determine the diffusivities by the method of nonlinear regression. The diffusivity values for the oxygen transfer was found to be a function of molecular diffusion, eddy diffusion and flow velocity.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 799
Author(s):  
Xiangli Pei ◽  
Ying Tian ◽  
Minglu Zhang ◽  
Ruizhuo Shi

It is challenging to accurately judge the actual end position of the manipulator—regarded as a rigid body—due to the influence of micro-deformation. Its precise and efficient control is a crucial problem. To solve the problem, the Hamilton principle was used to establish the partial differential equation (PDE) dynamic model of the manipulator system based on the infinite dimension of the working environment interference and the manipulator space. Hence, it resolves the common overflow instability problem in the micro-deformable manipulator system modeling. Furthermore, an infinite-dimensional radial basis function neural network compensator suitable for the dynamic model was proposed to compensate for boundary and uncertain external interference. Based on this compensation method, a distributed boundary proportional differential control method was designed to improve control accuracy and speed. The effectiveness of the proposed model and method was verified by theoretical analysis, numerical simulation, and experimental verification. The results show that the proposed method can effectively improve the response speed while ensuring accuracy.


Sign in / Sign up

Export Citation Format

Share Document