scholarly journals Learned Infinite Elements

2021 ◽  
Vol 43 (5) ◽  
pp. A3552-A3579
Author(s):  
Thorsten Hohage ◽  
Christoph Lehrenfeld ◽  
Janosch Preuß
Keyword(s):  
2014 ◽  
Vol 578-579 ◽  
pp. 445-455
Author(s):  
Mustapha Demidem ◽  
Remdane Boutemeur ◽  
Abderrahim Bali ◽  
El-Hadi Benyoussef

The main idea of this paper is to present a smart numerical technique to solve structural and non-structural problems in which the domain of interest extends to large distance in one or more directions. The concerned typical problems may be the underground excavation (tunneling or mining operations) and some heat transfer problems (energy flow rate for construction panels). The proposed numerical technique is based on the coupling between the finite element method (M.E.F.) and the infinite element method (I.E.M.) in an attractive manner taking into consideration the advantages that both methods offer with respect to the near field and the far field (good accuracy and sensible reduction of equations to be solved). In this work, it should be noticed that the using of this numerical coupling technique, based on the infinite element ascent formulation, has introduced a more realistic and economic way to solve unbounded problems for which modeling and efficiency have been elegantly improved. The types of the iso-parametric finite elements used are respectively the eight-nodes (Q8) and the four-nodes (Q4) for the near field. However, for the far field the iso-parametric infinite elements used are the eight-nodes (Q8I) and the six-nodes (Q6I).


Author(s):  
Stewart W. Moore ◽  
Henno Allik

Abstract The analysis of three-dimensional shell structures submerged in an infinite fluid and subjected to arbitrary loadings is a computationally demanding problem regardless of the analytical technique used. Over the past several years, we have developed a combined finite/infinite element method of solving this class of problems that is more efficient than other available techniques, and have implemented it in a comprehensive set of computer programs called SARA. This paper presents an overview of our work in parallizing this software. In the first part of the paper, we describe our method for solving the fluid-structure interaction equations including infinite element theory, and modeling practices that have evolved for solving cylindrical geometries. The second part of the paper addresses parallalization of SARA-3D on both shared and distributed memory architectures. The SARA implementation of the method is described along with sample problems, and a comparison to a SARA-3D solution is provided.


Sign in / Sign up

Export Citation Format

Share Document