scholarly journals Infinitely Many Embedded Eigenvalues for the Neumann--Poincaré Operator in 3D

2022 ◽  
Vol 54 (1) ◽  
pp. 343-362
Author(s):  
Wei Li ◽  
Karl-Mikael Perfekt ◽  
Stephen P. Shipman
Keyword(s):  
Author(s):  
Piero D’Ancona ◽  
Luca Fanelli ◽  
Nico Michele Schiavone

AbstractWe prove that the eigenvalues of the n-dimensional massive Dirac operator $${\mathscr {D}}_0 + V$$ D 0 + V , $$n\ge 2$$ n ≥ 2 , perturbed by a potential V, possibly non-Hermitian, are contained in the union of two disjoint disks of the complex plane, provided V is sufficiently small with respect to the mixed norms $$L^1_{x_j} L^\infty _{{\widehat{x}}_j}$$ L x j 1 L x ^ j ∞ , for $$j\in \{1,\dots ,n\}$$ j ∈ { 1 , ⋯ , n } . In the massless case, we prove instead that the discrete spectrum is empty under the same smallness assumption on V, and in particular the spectrum coincides with the spectrum of the unperturbed operator: $$\sigma ({\mathscr {D}}_0+V)=\sigma ({\mathscr {D}}_0)={\mathbb {R}}$$ σ ( D 0 + V ) = σ ( D 0 ) = R . The main tools used are an abstract version of the Birman–Schwinger principle, which allows in particular to control embedded eigenvalues, and suitable resolvent estimates for the Schrödinger operator.


2012 ◽  
Vol 24 (08) ◽  
pp. 1250020 ◽  
Author(s):  
JEAN BELLISSARD ◽  
HERMANN SCHULZ-BALDES

This paper analyzes the scattering theory for periodic tight-binding Hamiltonians perturbed by a finite range impurity. The classical energy gradient flow is used to construct a conjugate (or dilation) operator to the unperturbed Hamiltonian. For dimension d ≥ 3, the wave operator is given by an explicit formula in terms of this dilation operator, the free resolvent and the perturbation. From this formula, the scattering and time delay operators can be read off. Using the index theorem approach, a Levinson theorem is proved which also holds in the presence of embedded eigenvalues and threshold singularities.


2013 ◽  
Vol 53 (5) ◽  
pp. 416-426 ◽  
Author(s):  
Pavel Exner ◽  
Jiří Lipovský

We discuss resonances for a nonrelativistic and spinless quantum particle confined to a two- or three-dimensional Riemannian manifold to which a finite number of semiinfinite leads is attached. Resolvent and scattering resonances are shown to coincide in this situation. Next we consider the resonances together with embedded eigenvalues and ask about the high-energy asymptotics of such a family. For the case when all the halflines are attached at a single point we prove that all resonances are in the momentum plane confined to a strip parallel to the real axis, in contrast to the analogous asymptotics in some metric quantum graphs; we illustrate this on several simple examples. On the other hand, the resonance behaviour can be influenced by a magnetic field. We provide an example of such a ‘hedgehog’ manifold at which a suitable Aharonov-Bohm flux leads to absence of any true resonance, i.e. that corresponding to a pole outside the real axis.


2002 ◽  
Vol 14 (06) ◽  
pp. 569-584 ◽  
Author(s):  
ALEXANDER ELGART ◽  
JEFFREY H. SCHENKER

We prove an adiabatic theorem for the evolution of spectral data under a weak additive perturbation in the context of a system without an intrinsic time scale. For continuous functions of the unperturbed Hamiltonian the convergence is in norm while for a larger class functions, including the spectral projections associated to embedded eigenvalues, the convergence is in the strong operator topology.


Sign in / Sign up

Export Citation Format

Share Document