classical energy
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 32)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 8 (1) ◽  
pp. 56-60
Author(s):  
E. Gudoshnik ◽  
D. Chernogorodov

Along with the extensive use of classical energy keys in modern society, efforts are being made to integrate so-called non-traditional (or alternative) energy sources into the economic circulation. The article examines the types of alternative energy sources, their advantages and disadvantages in relation to the climatic and geographical circumstances of the territory. Annotation. Along with the extensive use of classical energy sources in society, efforts are being made to integrate so-called non-traditional (or alternative) energy sources into economic circulation. This article discusses the types of alternative energy sources, their benefits.


2021 ◽  
Vol 57 (2) ◽  
pp. 025012
Author(s):  
Kim Krijtenburg-Lewerissa ◽  
Henk Pol ◽  
Alexander Brinkman ◽  
Wouter van Joolingen

Abstract Quantum mechanics (QM) has become part of many secondary school curricula. These curricula often do not include the mathematical tools for a formal, mathematical introduction of QM. QM therefore needs to be taught at a more conceptual level, but making secondary school students understand counterintuitive QM concepts without introducing mathematical formalism is a challenge. In order to accept QM, students not only have to see the need of it, but also have to see that QM is understandable and logical. Dutch secondary school students are familiar with potential energy (PE) in the context of gravitational and elastic energy. Therefore, the introduction of QM by using the potential wells and tunneling with emphasis on students’ prior knowledge of PE could be a way to make QM more understandable and logical. To explore this, we investigated the relation between the understanding of energy diagrams and the understanding of the potential well and tunneling. A module was created to promote students’ understanding of PE in classical context. Then, a quasi-experimental intervention was used, in which the experimental group received additional lessons using the module on classical energy diagrams before being taught QM. Two tests were developed in order to determine students’ understanding of PE and QM. The results of the tests showed that the experimental group not only had better understanding of PE diagrams, but also of QM even before they were being taught QM. Analysis of the tests also showed that there was a significant correlation between the understanding of PE diagrams and the understanding of QM. Therefore, the results of this study indicate that emphasis on PE can be used to reduce the gap between students’ prior knowledge and QM.


2021 ◽  
Author(s):  
James Quach ◽  
Sabrina L. Slimani ◽  
Roman Kostecki ◽  
Ahmed Nuri Kursunlu ◽  
Tak W. Kee ◽  
...  

Photosynthesis has been shown to be a highly efficient process for energy transfer in plants and bacteria. It has been proposed that quantum mechanics plays a key role in this energy transfer process. There has been evidence that photosynthetic systems may exhibit quantum coherence. As artificial light-harvesting complexes have been proposed to mimic photosynthesis, it is prudent that artificial photosynthetic materials should also be tested for quantum coherence. To date, such studies have not been reported. In this work, we examine one such system, the BODIPY light harvesting complex (LHC), which has been shown to exhibit classical energy transfer via Förster resonance energy transfer. We compare the photon absorption of the LHC with the BODIPY chromophore by performing UV-visible, transient absorption, broadband pump-probe (BBPP) and two-dimensional electronic (2DES) spectroscopy. The 2DES and BBPP show evidence for quantum coherence, with oscillation frequencies of 100 cm-1 and 600 cm-1, which are attributable to vibronic, or exciton-phonon type coupling. Further computational analysis suggests strong couplings of the molecular orbitals of the LHC resulting from the stacking of neighbouring BODIPY chromophore units may contribute to undesirable hypochromic effects .


2021 ◽  
Vol 69 (4) ◽  
pp. 400-420
Author(s):  
Marc Muselli ◽  
Daniel Beysens

Abstract Biocrust sustainability relies on dew and rain availability. A study of dew and rain resources in amplitude and frequency and their evolution is presented from year 2001 to 2020 in southern Africa (Namibia, Botswana, South Africa) where many biocrust sites have been identified. The evaluation of dew is made from a classical energy balance model using meteorological data collected in 18 stations, where are also collected rain data. One observes a strong correlation between the frequency of dew and rain and the corresponding amplitudes. There is a general tendency to see a decrease in dew yield and dew frequency with increasing distance from the oceans, located west, east and south, due to decreasing RH, with a relative minimum in the desert of Kalahari (Namibia). Rain amplitude and frequency decreases when going to west and north. Short-term dew/rain correlation shows that largest dew yields clearly occur during about three days after rainfall, particularly in the sites where humidity is less. The evolution in the period corresponds to a decrease of rain precipitations and frequency, chiefly after 2010, an effect which has been cyclic since now. The effect is more noticeable towards north. An increase of dew yield and frequency is observed, mainly in north and south-east. It results in an increase of the dew contribution with respect to rain, especially after 2010. As no drastic changes in the distribution of biomass of biocrusts have been reported in this period, it is likely that dew should compensate for the decrease in rain precipitation. Since the growth of biocrust is related to dew and rain amplitude and frequency, future evolution should be characterized by either the rain cycle or, due to global change, an acceleration of the present tendency, with more dew and less rainfalls.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012055
Author(s):  
Francesc Font

Abstract In this paper a mathematical model describing the heat transport in a spherical nanoparticle subject to Newton heating at its surface is presented. The governing equations involve a phonon hydrodynamic equation for the heat flux and the classical energy equation that relates the heat flux and the temperature. Assuming radial symmetry the model is reduced to two partial differential equation, one for the radial component of the flux and one for the temperature. We solve the model numerically by means of finite differences. The resulting temperature profiles show characteristic wave-like behaviour consistent with the non Fourier components in the hydrodynamic equation.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 165
Author(s):  
Thomas Berry ◽  
Alex Simpson ◽  
Matt Visser

We discuss the “quantum deformed Schwarzschild spacetime”, as originally introduced by Kazakov and Solodukhin in 1993, and investigate the precise sense in which it does and does not satisfy the desiderata for being a “regular black hole”. We shall carefully distinguish (i) regularity of the metric components, (ii) regularity of the Christoffel components, and (iii) regularity of the curvature. We shall then embed the Kazakov–Solodukhin spacetime in a more general framework where these notions are clearly and cleanly separated. Finally, we analyze aspects of the classical physics of these “quantum deformed Schwarzschild spacetimes”. We shall discuss the surface gravity, the classical energy conditions, null and timelike geodesics, and the appropriate variant of the Regge–Wheeler equation.


Author(s):  
Anna Sinelnikova ◽  
David van der Spoel

AbstractNuclear magnetic resonance spectroscopy is used routinely for studying the three-dimensional structures and dynamics of proteins and nucleic acids. Structure determination is usually done by adding restraints based upon NMR data to a classical energy function and performing restrained molecular simulations. Here we report on the implementation of a script to extract NMR restraints from a NMR-STAR file and export it to the GROMACS software. With this package it is possible to model distance restraints, dihedral restraints and orientation restraints. The output from the script is validated by performing simulations with and without restraints, including the ab initio refinement of one peptide.


2021 ◽  
Vol 9 ◽  
pp. 20-26
Author(s):  
Mimoun Younes ◽  
Riad Lakhdar Kherfene ◽  
Fouad Khodja

Exploitation and development of renewable energy such as solar and wind energy is a very important alternative to reduce gas emissions, reduce the bill for power generation. This paper examines the implications of renewable energy deployment in power generation with the classical energy system, managed by an intelligent method, to minimize the cost of production of electric energy and also reduce the emission of gases. Simulation results on the 10 units power system prove the efficiency of this method thus confirming its capacity to solve the environmental/economic power dispatch problem with the renewable energy.


2021 ◽  
Author(s):  
Anna Sinelnikova ◽  
David van der Spoel

<div><div><div><p>Nuclear magnetic resonance spectroscopy is used routinely for studying the three-dimensional structures and dynamics of proteins. Structure determination is usually done by adding restraints based upon NMR data to a classical energy function and performing restrained molecular simulations. Here we report on the implementation of a script to extract NMR restraints from a NMR-STAR file and export it to the GROMACS software. With this package it is possible to model distance restraints, dihedral restraints and orientation restraints. The output from the script is validated by performing simulations with and without restraints, including the ab initio refinement of one peptide.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document