The SDFEM for a Convection-Diffusion Problem with a Boundary Layer: Optimal Error Analysis and Enhancement of Accuracy

2003 ◽  
Vol 41 (5) ◽  
pp. 1620-1642 ◽  
Author(s):  
Martin Stynes ◽  
Lutz Tobiska
2015 ◽  
Vol 7 (2) ◽  
pp. 196-206
Author(s):  
Yanping Chen ◽  
Haitao Leng ◽  
Li-Bin Liu

AbstractIn this paper, we consider a singularly perturbed convection-diffusion problem. The problem involves two small parameters that gives rise to two boundary layers at two endpoints of the domain. For this problem, a non-monotone finite element methods is used. A priori error bound in the maximum norm is obtained. Based on the a priori error bound, we show that there exists Bakhvalov-type mesh that gives optimal error bound of (N−2) which is robust with respect to the two perturbation parameters. Numerical results are given that confirm the theoretical result.


2020 ◽  
Vol 20 (4) ◽  
pp. 717-725 ◽  
Author(s):  
Vidar Thomée

AbstractFor a spatially periodic convection-diffusion problem, we analyze a time stepping method based on Lie splitting of a spatially semidiscrete finite element solution on time steps of length k, using the backward Euler method for the diffusion part and a stabilized explicit forward Euler approximation on {m\geq 1} intervals of length {k/m} for the convection part. This complements earlier work on time splitting of the problem in a finite difference context.


2020 ◽  
Vol 20 (4) ◽  
pp. 769-782
Author(s):  
Amiya K. Pani ◽  
Vidar Thomée ◽  
A. S. Vasudeva Murthy

AbstractWe analyze a second-order in space, first-order in time accurate finite difference method for a spatially periodic convection-diffusion problem. This method is a time stepping method based on the first-order Lie splitting of the spatially semidiscrete solution. In each time step, on an interval of length k, of this solution, the method uses the backward Euler method for the diffusion part, and then applies a stabilized explicit forward Euler approximation on {m\geq 1} intervals of length {\frac{k}{m}} for the convection part. With h the mesh width in space, this results in an error bound of the form {C_{0}h^{2}+C_{m}k} for appropriately smooth solutions, where {C_{m}\leq C^{\prime}+\frac{C^{\prime\prime}}{m}}. This work complements the earlier study [V. Thomée and A. S. Vasudeva Murthy, An explicit-implicit splitting method for a convection-diffusion problem, Comput. Methods Appl. Math. 19 2019, 2, 283–293] based on the second-order Strang splitting.


Sign in / Sign up

Export Citation Format

Share Document