An Algebraic Condition Equivalent to Strong Stability of Stationary Solutions of Nonlinear Positive Semidefinite Programs

2005 ◽  
Vol 16 (2) ◽  
pp. 452-470 ◽  
Author(s):  
Toshihiro Matsumoto
Author(s):  
Hamza Fawzi

It is well known that state-of-the-art linear programming solvers are more efficient than their semidefinite programming counterparts and can scale to much larger problem sizes. This leads us to consider the question, how well can we approximate semidefinite programs with linear programs? In this paper, we prove lower bounds on the size of linear programs that approximate the positive semidefinite cone. Let D be the set of n × n positive semidefinite matrices of trace equal to one. We prove two results on the hardness of approximating D with polytopes. We show that if 0 < ε < 1and A is an arbitrary matrix of trace equal to one, any polytope P such that (1-ε) (D-A) ⊂ P ⊂ D-A must have linear programming extension complexity at least [Formula: see text], where c > 0 is a constant that depends on ε. Second, we show that any polytope P such that D ⊂ P and such that the Gaussian width of P is at most twice the Gaussian width of D must have extension complexity at least [Formula: see text]. Our bounds are both superpolynomial in n and demonstrate that there is no generic way of approximating semidefinite programs with compact linear programs. The main ingredient of our proofs is hypercontractivity of the noise operator on the hypercube.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mark Girard ◽  
Martin Plávala ◽  
Jamie Sikora

AbstractGiven two quantum channels, we examine the task of determining whether they are compatible—meaning that one can perform both channels simultaneously but, in the future, choose exactly one channel whose output is desired (while forfeiting the output of the other channel). Here, we present several results concerning this task. First, we show it is equivalent to the quantum state marginal problem, i.e., every quantum state marginal problem can be recast as the compatibility of two channels, and vice versa. Second, we show that compatible measure-and-prepare channels (i.e., entanglement-breaking channels) do not necessarily have a measure-and-prepare compatibilizing channel. Third, we extend the notion of the Jordan product of matrices to quantum channels and present sufficient conditions for channel compatibility. These Jordan products and their generalizations might be of independent interest. Last, we formulate the different notions of compatibility as semidefinite programs and numerically test when families of partially dephasing-depolarizing channels are compatible.


Sign in / Sign up

Export Citation Format

Share Document