Potassium involvement not demonstrated in stomatal movements of Paphiopedilum. Qualified confirmation of the Nelson–Mayo report

1982 ◽  
Vol 60 (3) ◽  
pp. 240-244 ◽  
Author(s):  
William H. Outlaw Jr. ◽  
Jill Manchester ◽  
Vincent E. Zenger

Guard cells of Paphiopedilum leaves lack chlorophyll, a unique condition. Whether potassium fluxes are involved in stomatal movements is controversial. In attempting to resolve this controversy, we have dissected individual guard cell pairs from frozen-dried epidermal peels of three species. These samples were assayed for potassium using quantitative histochemical methodology. We were unable to detect a correlation between guard cell potassium content and stomatal aperture size. With certain reservations, these results indicate potassium is not the major osmoticum causing stomata of these species to open.

2021 ◽  
Author(s):  
Frances C Sussmilch ◽  
Tobias Maierhofer ◽  
Johannes Herrmann ◽  
Lena J Voss ◽  
Christof Lind ◽  
...  

The evolution of adjustable plant pores (stomata), enabling CO2 acquisition in cuticle wax-sealed tissues was one of the most significant events in the development of life on land. But how did the guard cell signalling pathways that regulate stomatal movements evolve? We investigate this through comparison of fern and angiosperm guard cell transcriptomes. We find that these divergent plant groups share expression of similar genes in guard cells including biosynthesis and signalling genes for the drought stress hormone abscisic acid (ABA). However, despite conserved expression in guard cells, S-type anion channels from the SLAC/SLAH family — known for ABA-mediated stomatal closure in angiosperms — are not activated by the same pathways in ferns, highlighting likely differences in functionality. Examination of other land plant channels revealed a complex evolutionary history, featuring multiple gains or losses of SLAC activation mechanisms, as these channels were recruited to a role in stomatal closure. Taken together, the guard cells of flowering and non-flowering plants share similar core features, but also show lineage-specific and ecological niche-related adaptations, likely underlying differences in behaviour.


1972 ◽  
Vol 25 (5) ◽  
pp. 877 ◽  
Author(s):  
DA Thomas

Stepwise decreases in the stomatal aperture of tobacco leaf epidermal strips followed stepwise increases in the concentration of KHCOa added to bathing solutions. Removal of KHCOa from the bathing solution resulted in a rapid increase in aperture. The reduction in aperture caused by KHCO., both in the light and dark, can be reversed by the addition of ATP or phosphoenol pyruvate to the bathing solution. The stomatal opening, supported by a NaCl bathing medium, is reduced by the addition of NaHCOa? From the results it is suggested that HCO;/C02t increases the permeability of guard cell membranes causing a net efflux of water or ions or both from the guard cells.


1993 ◽  
Vol 44 (10) ◽  
pp. 1569-1577 ◽  
Author(s):  
WILFRIED DIEKMANN ◽  
RAINER HEDRICH ◽  
KLAUS RASCHKE ◽  
DAVID G. ROBINSON

1982 ◽  
Vol 69 (5) ◽  
pp. 1140-1144 ◽  
Author(s):  
Teruo Ogawa ◽  
David Grantz ◽  
John Boyer ◽  
Govindjee

2008 ◽  
Vol 27 (10) ◽  
pp. 1655-1665 ◽  
Author(s):  
Xin-Qi Gao ◽  
Jing Chen ◽  
Peng-Cheng Wei ◽  
Fei Ren ◽  
Jia Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document