In vitro culture of arbuscular mycorrhizal fungus and Frankia for inoculation of micropropagated Casuarina equisetifolia L.

1999 ◽  
Vol 77 (9) ◽  
pp. 1391-1397
Author(s):  
Genevieve Louise Mark ◽  
John E Hooker ◽  
Alexander Hahn ◽  
Chris T Wheeler

Micropropagated, rooted, and calli explants of Casuarina equisetifolia L. were inoculated with Frankia UGL 020605S and the arbuscular mycorrhizal fungus (AMF) Glomus mosseae, in single and dual co-culture, in vitro. Different micropropagation media formulations were evaluated for their capacity to stimulate germination of G. mosseae spores and growth of Frankia. Murashige and Skoog basal nutrient (half strength) medium, supplemented with 6-benzylaminopurine (BAP), 2,4-dichlorophenoxyacetic acid (2,4-D), and pyruvate was selected for the in vitro co-culture of C. equisetifolia callus explants, G. mosseae, and Frankia. This medium (M4) supported 70% AMF spore germination with 44 and 34% of the germinating spores producing single and branched hyphal strands, respectively. Hoaglands (quarter strength, modified by Hoaglands and Arnon (1950)) nutrient medium (M5) with no supplements was selected for the in vitro co-culture of rooted C. equisetifolia explants, G. mosseae, and Frankia and supported 57% AMF spore germination with 29 and 40% of the germinating spores producing single and branched hyphal strands, respectively. Both media supported significant growth of Frankia. In both cases agar was substituted with Terragreen(r). AMF appressoria and intercellular hyphae were observed in rooted C. equisetifolia at 28 days; arbuscule formation occurred at 56 days postinoculation. Frankia infection was evident after 28 days. This was observed in both dual and single in vitro co-cultures. No specific immunofluorescent or immunogold reactions to monoclonal antibodies (mABs) anti-Frankia < 8C5 > and anti-G. mosseae < F5G5 > were evident in C. equisetifolia callus explants.Key words: arbuscular mycorrhizal fungi (AMF), Frankia, Casuarina, micropropagation, immunofluorescent labelling.




2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah Hines ◽  
Timo van der Zwan ◽  
Kevin Shiell ◽  
Katy Shotton ◽  
Balakrishnan Prithiviraj

AbstractAscophyllum nodosum extracts (ANE) are well-established plant biostimulants that improve stress tolerance and crop vigour, while also having been shown to stimulate soil microbes. The intersection of these two stimulatory activities, and how they combine to enhance plant health, however, remains poorly understood. In the present study, we aimed to evaluate: (1) the direct effect of ANE on the arbuscular mycorrhizal fungus Rhizophagus irregularis, and (2) whether ANE influences endomycorrhization in plants. ANE enhanced development of R. irregularis in vitro, showing greater spore germination, germ tube length, and hyphal branching. Greenhouse-grown Medicago truncatula drench-treated with ANE formed mycorrhizal associations faster (3.1-fold higher mycorrhization at week 4) and grew larger (29% greater leaf area by week 8) than control plants. Foliar applications of ANE also increased root colonization and arbuscular maturity, but did not appear to enhance plant growth. Nonetheless, following either foliar or drench application, M. truncatula genes associated with establishment of mycorrhizae were expressed at significantly higher levels compared to controls. These results suggest that ANE enhances mycorrhization through both direct stimulation of arbuscular mycorrhizal fungus growth and through stimulation of the plant’s accommodation of the symbiont, together promoting the establishment of this agriculturally vital plant–microbe symbiosis.



2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anurag Chaturvedi ◽  
Joaquim Cruz Corella ◽  
Chanz Robbins ◽  
Anita Loha ◽  
Laure Menin ◽  
...  

AbstractEarly-diverging fungi (EDF) are distinct from Dikarya and other eukaryotes, exhibiting high N6-methyldeoxyadenine (6mA) contents, rather than 5-methylcytosine (5mC). As plants transitioned to land the EDF sub-phylum, arbuscular mycorrhizal fungi (AMF; Glomeromycotina) evolved a symbiotic lifestyle with 80% of plant species worldwide. Here we show that these fungi exhibit 5mC and 6mA methylation characteristics that jointly set them apart from other fungi. The model AMF, R. irregularis, evolved very high levels of 5mC and greatly reduced levels of 6mA. However, unlike the Dikarya, 6mA in AMF occurs at symmetrical ApT motifs in genes and is associated with their transcription. 6mA is heterogeneously distributed among nuclei in these coenocytic fungi suggesting functional differences among nuclei. While far fewer genes are regulated by 6mA in the AMF genome than in EDF, most strikingly, 6mA methylation has been specifically retained in genes implicated in components of phosphate regulation; the quintessential hallmark defining this globally important symbiosis.



Mycorrhiza ◽  
2001 ◽  
Vol 11 (6) ◽  
pp. 279-282 ◽  
Author(s):  
Horst Vierheilig ◽  
Monica Alt-Hug ◽  
Andres Wiemken ◽  
Thomas Boller




Mycologia ◽  
1996 ◽  
Vol 88 (6) ◽  
pp. 947-950 ◽  
Author(s):  
R. Koske ◽  
C. Bonin ◽  
J. Kelly ◽  
C. Martinez


Sign in / Sign up

Export Citation Format

Share Document