A density functional study of Rh13

2013 ◽  
Vol 91 (7) ◽  
pp. 591-597 ◽  
Author(s):  
Patrizia Calaminici ◽  
José M. Vásquez-Pérez ◽  
Diego A. Espíndola Velasco

A density functional study was performed for the Rh13 cluster using the linear combination of Gaussian-type orbitals density functional theory (LCGTO-DFT) approach. The calculations employed both the local density approximation (LDA) as well as the generalized gradient approximation (GGA) in combination with a quasi-relativistic effective core potential (QECP). Initial structures for the geometry optimization were taken along Born–Oppenheimer molecular dynamics (BOMD) trajectories. The BOMD trajectories were performed at different temperatures and considered different potential energy surfaces (PES). As a result, several hundred isomers of the Rh13 cluster in different spin multiplicities were optimized with the aim to determine the lowest energy structures. All geometry optimizations were performed without any symmetry restriction. A vibrational analysis was performed to characterize these isomers. Structural parameters, relative stability energy, harmonic frequencies, binding energy, and most relevant Kohn–Sham (KS) molecular orbitals are reported. The obtained results are compared with available data from the literature. This study predicts a low symmetry biplanarlike structure as the ground-state structure of Rh13 with 11 unpaired electrons. This isomer was first noticed by inspection of first-principle Born–Oppenheimer molecular dynamics (BOMD) simulations between 300 and 600 K. This represents the most extensive theoretical study on the ground-state structure of the Rh13 cluster and underlines the importance of BOMD simulations to fully explore the PES landscapes of complicated systems.

2009 ◽  
Vol 5 ◽  
pp. 25-30 ◽  
Author(s):  
Heribert Hernández-Cocoletzi ◽  
Gregorio H. Cocoletzi ◽  
J.F. Rivas-Silva ◽  
A. Flores ◽  
Noboru Takeuchi

We have performed first principles total energy calculations to investigate the structural properties of copper iodide (CuI) in its sodium chloride, cesium chloride, zincblende and wurtzite structures. Calculations are done using the density functional theory. We employ the full potential linearized augmented plane wave method as implemented in the wien2k code. The exchange and correlation potential energies are treated in the generalized gradient approximation (GGA), and the local density approximation (LDA). Optical absorption experiments and x-ray diffraction measurements have shown that zincblende is the ground state of CuI. Our calculations find that in the GGA formalism wurtzite and zincblende have similar total energies, while in the LDA formalism the lowest minimum corresponds to zincblende. Results show that the energy difference between the wurtzite and the zincblende structures, as calculated within the GGA formalism is 2 meV, and within the LDA formalism, is 31 meV. These results may suggest a coexistence of both wurtzite and zincblende structures in the ground state of CuI. Structural parameters are correctly reproduced by the GGA calculations. We obtain that under the application of external pressure the atomic configuration may transform into the NaCl structure. At higher pressures it is possible to have a phase transition to the CsCl geometry.


2005 ◽  
Vol 1 (4) ◽  
pp. 172-182 ◽  
Author(s):  
Patrizia Calaminici ◽  
Marcela R. Beltrán

Density functional calculations of neutral, cationic and anionic nickel octamer are presented. The structure optimization and frequency analysis were performed on the local density approximation (LDA) level with the exchange correlation functional by Vosko,Wilk and Nusair (VWN). Improved calculations for the stability were based on the generalized gradient approximation (GGA) where the exchange correlation functional of Perdew and Wang (PW) was used. For neutral, cationic and anionic cluster several isomers and different spin multiplicities were investigated in order to find the lowest structures. Structural parameters, relative energies, binding energies, harmonic frequencies, adiabatic ionization potential and electron affinity will be presented. The calculated values are compared with available experimental data.


Sign in / Sign up

Export Citation Format

Share Document