Development of a DNA aptamer that binds specifically to group A Streptococcus serotype M3

2017 ◽  
Vol 63 (2) ◽  
pp. 160-168 ◽  
Author(s):  
Hanif Alfavian ◽  
Seyed Latif Mousavi Gargari ◽  
Samaneh Rasoulinejad ◽  
Arvin Medhat

Group A streptococcus (GAS) is an important Gram-positive pathogen that causes various human diseases ranging from peripheral lesions to invasive infections. The M protein is one of the main virulence factors present on the cell surface and is associated with invasive GAS infections. Compared with other M types, serotype M3 has a predominant role in lethal infections and demonstrates epidemic behaviors, including streptococcal toxic shock syndrome, bacteremia, and necrotizing fasciitis. Traditional methods for M typing are time-consuming, tedious, contradictory, and generally restricted to reference laboratories. Therefore, development of a new M-typing technique is needed. Aptamers with the ability to detect their target with a high degree of accuracy and specificity can be ideal candidates for specific M-typing of Streptococcus pyogenes. In this study DNA aptamers with a high binding affinity towards S. pyogenes serotype M3 were selected through 12 iterative rounds of the Systematic Evolution of Ligands by EXponential (SELEX) enrichment procedure using live cells as a target. We monitored the progress of the SELEX procedure by flow cytometry analysis. Of several aptamer sequences analyzed, 12L18A showed the highest binding efficiency towards S. pyogenes type M3, with an apparent dissociation constant (Kd) of 7.47 ± 1.72 pmol/L being the lowest. Therefore the isolated aptamer can be used in any tool, such as a biosensor, for the detection of S. pyogenes and can be used in the development of a novel M-typing system.

2008 ◽  
Vol 57 (11) ◽  
pp. 1383-1388 ◽  
Author(s):  
Takeaki Wajima ◽  
Somay Y. Murayama ◽  
Katsuhiko Sunaoshi ◽  
Eiichi Nakayama ◽  
Keisuke Sunakawa ◽  
...  

To determine the prevalence of macrolide antibiotic and levofloxacin resistance in infections with Streptococcus pyogenes (group A streptococcus or GAS), strains were collected from 45 medical institutions in various parts of Japan between October 2003 and September 2006. Four hundred and eighty-two strains from patients with GAS infections were characterized genetically. Strains were classified into four groups according to the type of infection: invasive infections (n=74) including sepsis, cellulitis and toxic-shock-like syndrome; acute otitis media (AOM; n=23); abscess (n=53); and pharyngotonsillitis (n=332). Among all strains, 32 emm types were identified; emm1 was significantly more common in invasive infections (39.2 %) and AOM (43.5 %) than in abscesses (3.8 %) or pharyngotonsillitis (10.2 %). emm12 and emm4 each accounted for 23.5 % of pharyngotonsillitis cases. Susceptibility of GAS strains to eight β-lactam agents was excellent, with MICs of 0.0005–0.063 μg ml−1. Macrolide-resistant strains accounted for 16.2 % of all strains, while the percentages of strains possessing the resistance genes erm(A), erm(B) and mef(A) were 2.5 %, 6.2 % and 7.5 %, respectively. Although no strains with high resistance to levofloxacin were found, strains with an MIC of 2–4 μg ml−1 (17.4 %) had amino acid substitutions at either Ser-79 or Asp-83 in ParC. These levofloxacin-intermediately resistant strains included 16 emm types, but macrolide-resistant strains were more likely than others to represent certain emm types.


2021 ◽  
Vol 22 (21) ◽  
pp. 11617
Author(s):  
Nina Tsao ◽  
Ya-Chu Chang ◽  
Sung-Yuan Hsieh ◽  
Tang-Chi Li ◽  
Ching-Chen Chiu ◽  
...  

Streptococcus pyogenes (group A Streptococcus (GAS) is an important human pathogen that can cause severe invasive infection, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The mortality rate of streptococcal toxic shock syndrome ranges from 20% to 50% in spite of antibiotics administration. AR-12, a pyrazole derivative, has been reported to inhibit the infection of viruses, intracellular bacteria, and fungi. In this report, we evaluated the bactericidal activities and mechanisms of AR-12 on GAS infection. Our in vitro results showed that AR-12 dose-dependently reduced the GAS growth, and 2.5 μg/mL of AR-12 significantly killed GAS within 2 h. AR-12 caused a remarkable reduction in nucleic acid and protein content of GAS. The expression of heat shock protein DnaK and streptococcal exotoxins was also inhibited by AR-12. Surveys of the GAS architecture by scanning electron microscopy revealed that AR-12-treated GAS displayed incomplete septa and micro-spherical structures protruding out of cell walls. Moreover, the combination of AR-12 and gentamicin had a synergistic antibacterial activity against GAS replication for both in vitro and in vivo infection. Taken together, these novel findings obtained in this study may provide a new therapeutic strategy for invasive GAS infection.


2006 ◽  
Vol 399 (2) ◽  
pp. 241-247 ◽  
Author(s):  
William L. Sheldon ◽  
Matthew S. Macauley ◽  
Edward J. Taylor ◽  
Charlotte E. Robinson ◽  
Simon J. Charnock ◽  
...  

Group A streptococcus (Streptococcus pyogenes) is the causative agent of severe invasive infections such as necrotizing fasciitis (the so-called ‘flesh eating disease’) and toxic-shock syndrome. Spy1600, a glycoside hydrolase from family 84 of the large superfamily of glycoside hydrolases, has been proposed to be a virulence factor. In the present study we show that Spy1600 has no activity toward galactosaminides or hyaluronan, but does remove β-O-linked N-acetylglucosamine from mammalian glycoproteins – an observation consistent with the inclusion of eukaryotic O-glycoprotein 2-acetamido-2-deoxy-β-D-glucopyranosidases within glycoside hydrolase family 84. Proton NMR studies, structure–reactivity studies for a series of fluorinated analogues and analysis of 1,2-dideoxy-2′-methyl-α-D-glucopyranoso-[2,1-d]-Δ2′-thiazoline as a competitive inhibitor reveals that Spy1600 uses a double-displacement mechanism involving substrate-assisted catalysis. Family 84 glycoside hydrolases are therefore comprised of both prokaryotic and eukaryotic β-N-acetylglucosaminidases using a conserved catalytic mechanism involving substrate-assisted catalysis. Since these enzymes do not have detectable hyaluronidase activity, many family 84 glycoside hydrolases are most likely incorrectly annotated as hyaluronidases.


2015 ◽  
Vol 21 (12) ◽  
pp. 873-876 ◽  
Author(s):  
Mayu Hikone ◽  
Ken-ichiro Kobayashi ◽  
Takuya Washino ◽  
Masayuki Ota ◽  
Naoya Sakamoto ◽  
...  

2015 ◽  
Vol 04 (03) ◽  
pp. 295-299
Author(s):  
Sanjeev Gupta ◽  
Jarrod Brumby ◽  
Joanna Burton ◽  
Susan Moloney ◽  
Benjamin Kenny

2017 ◽  
Vol 70 (2) ◽  
pp. 184
Author(s):  
Waleed M. Hussein ◽  
Jiaxin Xu ◽  
Pavla Simerska ◽  
Istvan Toth

Group A streptococcus (GAS; Streptococcus pyogenes), known as the ‘flesh-eating bacterium’, is a human bacterial pathogen that normally causes benign infections (e.g. sore throat and pyoderma), but is also responsible for severe invasive infections (e.g. ‘flesh-eating’ disease and toxic shock syndrome), heart disease, and kidney failure. A safe commercial GAS vaccine is yet to be developed. Individual GAS antigens demonstrate potential universal expression across all GAS serotypes (>200 known), with dramatically reduced concern for autoimmune complications, and compelling efficacy in preclinical testing in mice. In this study, we developed a stepwise conjugation strategy, copper-catalysed alkyne–azide cycloaddition reaction (CuAAC), followed by mercapto–maleimide conjugation, to synthesise a multiantigenic, self-adjuvanting, peptide-based vaccine candidate against GAS. This multiantigenic vaccine includes two GAS antigens, J8 and NS1, a T-helper epitope, PADRE, and a self-adjuvanting moiety, dipalmitoyl serine.


2000 ◽  
Vol 68 (11) ◽  
pp. 6362-6369 ◽  
Author(s):  
Rita G. Kansal ◽  
Allison McGeer ◽  
Donald E. Low ◽  
Anna Norrby-Teglund ◽  
Malak Kotb

ABSTRACT The streptococcal cysteine protease (SpeB) is one of the major virulence factors produced by group A streptococci (GAS). In this study we investigated if differences exist in SpeB production by clonally related M1T1 clinical isolates derived from patients with invasive infections. Twenty-nine of these isolates were from nonsevere cases and 48 were from severe cases, including streptococcal toxic shock syndrome (STSS) and necrotizing fasciitis (NF) cases. The expression and amount of the 28-kDa SpeB protein produced were determined by quantitative Western blotting, and protease activity was measured by a fluorescent enzymatic assay. A high degree of variation in SpeB expression was seen among the isolates, and this variation seemed to correlate with the severity and/or clinical manifestation of the invasive infection. The mean amount of 28-kDa SpeB protein and cysteine protease activity produced by isolates from nonsevere cases was significantly higher than that from STSS cases (P = 0.001). This difference was partly due to the fact that 41% of STSS isolates produced little or no SpeB compared to only 14% of isolates recovered in nonsevere cases. Moreover, the cysteine protease activity among those isolates that expressed SpeB was significantly lower for STSS isolates than for isolates from nonsevere cases (P = 0.001). Increased SpeB production was also inversely correlated with intact M protein expression, and inhibition of cysteine protease activity blocked the cleavage of the surface M protein. Together, the data support the existence of both an “on-off” and a posttranslational regulatory mechanism(s) controlling SpeB production, and they suggest that isolates with the speB gene in the “off” state are more likely to spare the surface M protein and to be isolated from cases of severe rather than nonsevere invasive infection. These findings may have important implications for the role of SpeB in host-pathogen interactions via regulation of the expression of GAS virulence genes and the severity of invasive disease.


Sign in / Sign up

Export Citation Format

Share Document