scholarly journals Simulation of droplet impacting a square solid obstacle in microchannel with different wettability by using high density ratio pseudopotential multiple-relaxation-time (MRT) lattice Boltzmann method (LBM)

2019 ◽  
Vol 97 (1) ◽  
pp. 93-113 ◽  
Author(s):  
Wandong Zhao ◽  
Ying Zhang ◽  
Wenqiang Shang ◽  
Zhaotai Wang ◽  
Ben Xu ◽  
...  

In this paper, a pseudopotential high density ratio (DR) lattice Boltzmann model was developed by incorporating multi-relaxation-time collision matrix, large DR external force term, surface tension adjustment external force term, and solid–liquid pseudopotential force. It was found that the improved model can precisely capture the two-phase interface at high DR. Besides, the effects of initial Reynolds number, Weber number, solid wall contact angle (CA), ratio of obstacle size to droplet diameter (χ1), and ratio of channel width to droplet diameter (χ2) on the deformation and breakup of a droplet when impacting on a square obstacle were investigated. The results showed that with the Reynolds number increasing, the droplet will fall along the obstacle and then spread along both sides of the obstacle. Furthermore, by increasing Weber number, the breakup of the liquid film will be delayed and the liquid film will be stretched to form an elongated ligament. With decreasing of the wettability of solid particle (CA → 180°), the droplet will surround the obstacle and then detach from the obstacle. When χ1 is greater than 0.5, the droplet will spread along both sides of the obstacle quickly; otherwise, the droplet will be ruptured earlier. Furthermore, when χ2 decreases, the droplet will spread earlier and then fall along the wall more quickly; otherwise, the droplet will expand along both sides of the obstacle. Moreover, increasing the hydrophilicity of the microchannel, the droplet will impact the channel more rapidly and infiltrate the wall along the upstream and downstream simultaneously; on the contrary, the droplet will wet downstream only.

2014 ◽  
Vol 16 (4) ◽  
pp. 892-912 ◽  
Author(s):  
Duo Zhang ◽  
K. Papadikis ◽  
Sai Gu

AbstractIn the current study, a two-dimensional multi-relaxation time (MRT) lattice Boltzmann model which can tolerate high density ratios and low viscosity is employed to simulate the liquid droplet impact onto a curved target. The temporal variation of the film thickness at the north pole of the target surface is investigated. Three different temporal phases of the dynamics behavior, namely, the initial drop deformation phase, the inertia dominated phase and the viscosity dominated phase are reproduced and studied. The effect of the Reynolds number, Weber number and Galilei number on the film flow dynamics is investigated. In addition, the dynamic behavior of the droplet impact onto the side of the curved target is shown, and the effect of the contact angle, the Reynolds number and the Weber number are investigated.


Author(s):  
Y. Wang ◽  
C. Shu

Head-on collisions of binary micro-droplets are of great interest in both academic research and engineering applications. Numerical simulation of this problem is challenging due to complex interfacial changes and large density ratio between different fluids. In this work, the recently proposed lattice Boltzmann flux solver (LBFS) is applied to study this problem. The LBFS is a finite volume method for the direct update of macroscopic flow variables at cell centers. The fluxes of the LBFS are reconstructed at each cell interface through lattice moments of density distribution functions (DDFs). As compared with conventional multiphase lattice Boltzmann method, the LBFS can be easily applied to study complex multiphase flows with large density ratio. In addition, external forces can be implemented more conveniently and the tie-up between the time step and mesh spacing is also removed. Moreover, it can deal with complex boundary conditions directly as those do in the conventional Navier-Stokes solvers. At first, the reliability of the LBFS is validated by simulating a micro-droplet impacting on a dry surface at density ratio 832 (air to water). The obtained result agrees well with experimental measurement. After that, numerical simulations of head-on collisions of two micro droplets are carried out to examine different collisional behaviors in a wide range of Reynolds numbers and Weber numbers of 100 ≤ Re ≤ 2000 and 10 ≤ We ≤ 500. A phase diagram parameterized by these two control parameters is obtained to classify the outcomes of these collisions. It is shown that, at low Reynolds number (Re=100), two droplets will be coalescent into a bigger one for all considered Weber numbers. With the increase of the Reynolds number, separation of the collision into multiple droplets appears and the critical Weber number for separation is decreased. When the Reynolds number is sufficiently high, the critical Weber number for separation is between 20 and 25.


Fluids ◽  
2021 ◽  
Vol 6 (12) ◽  
pp. 434
Author(s):  
Assetbek Ashirbekov ◽  
Bagdagul Kabdenova ◽  
Ernesto Monaco ◽  
Luis R. Rojas-Solórzano

The original Shan-Chen’s pseudopotential Lattice Boltzmann Model (LBM) has continuously evolved during the past two decades. However, despite its capability to simulate multiphase flows, the model still faces challenges when applied to multicomponent-multiphase flows in complex geometries with a moderately high-density ratio. Furthermore, classical cubic equations of state usually incorporated into the model cannot accurately predict fluid thermodynamics in the near-critical region. This paper addresses these issues by incorporating a crossover Peng–Robinson equation of state into LBM and further improving the model to consider the density and the critical temperature differences between the CO2 and water during the injection of the CO2 in a water-saturated 2D homogeneous porous medium. The numerical model is first validated by analyzing the supercritical CO2 penetration into a single narrow channel initially filled with H2O, depicting the fundamental role of the driving pressure gradient to overcome the capillary resistance in near one and higher density ratios. Significant differences are observed by extending the model to the injection of CO2 into a 2D homogeneous porous medium when using a flat versus a curved inlet velocity profile.


Sign in / Sign up

Export Citation Format

Share Document