scholarly journals Rotational spectrum of isotopic methyl mercaptan, 13CH3SH, in the laboratory and towards Sagittarius B2(N2)

2020 ◽  
Vol 98 (6) ◽  
pp. 530-537
Author(s):  
Vadim V. Ilyushin ◽  
Olena Zakharenko ◽  
Frank Lewen ◽  
Stephan Schlemmer ◽  
Eugene A. Alekseev ◽  
...  

Methyl mercaptan (CH3SH) is a known interstellar molecule with abundances high enough that the detection of some of its minor isotopologues is promising. The present study aims to provide accurate spectroscopic parameters for the 13CH3SH isotopologue to facilitate its identification in the interstellar medium at millimetre and submillimetre wavelengths. Through careful analysis of recent CH3SH spectra from 49–510 GHz and 1.1–1.5 THz recorded at natural isotopic composition, extensive assignments were possible not only for the ground torsional state of 13CH3SH, but also in the first and second excited states. The torsion–rotation spectrum displays complex structure due to the large-amplitude internal rotation of the 13CH3 group, similar to the main and other minor isotopic species of methyl mercaptan. The assigned transition frequencies have been fitted to within experimental error with a 52-parameter model employing the RAM36 programme. With predictions based on this fit, 13CH3SH was searched for in spectra from the Atacama Large Millimetre/sub-millimetre Array (ALMA) towards the Galactic centre source Sgr B2(N2). Several transitions were expected to be observable, but all of them turned out to be severely blended with emission from other species, which prevents us from identifying 13CH3SH in this source.

The microwave rotational spectrum of the common isotopic species ( 12 CH 2 ) 32 3 S 16 O of trimethylene sulphoxide has been assigned and rotational constants obtained for the vibrational ground state, the first four excited states of the ring puckering mode and two other low-lying vibrationally excited states. In addition rotational constants have been derived for the vibrational ground state of each of the eight different singly substituted isotopic species [ 34 S], [ 13 C 2 ], [13 C 3 ], [ 2 H 2 ], [ 2 H 2 .], [ 2 H 3 ], [ 2 H 3 .] and [ 18 O], with the first three in natural abundance, and are as follows:


2019 ◽  
Vol 629 ◽  
pp. A72 ◽  
Author(s):  
Matthias H. Ordu ◽  
Oliver Zingsheim ◽  
Arnaud Belloche ◽  
Frank Lewen ◽  
Robin T. Garrod ◽  
...  

Context. Spectral lines of minor isotopic species of molecules that are abundant in space may also be detectable. Their respective isotopic ratios may provide clues about the formation of these molecules. Emission lines of acetone in the hot molecular core Sagittarius B2(N2) are strong enough to warrant a search for its singly substituted 13C isotopologs. Aims. We want to study the rotational spectra of CH313C(O)CH3 and 13CH3C(O)CH3 and search for them in Sagittarius B2(N2). Methods. We investigated the laboratory rotational spectrum of isotopically enriched CH313C(O)CH3 between 40 GHz and 910 GHz and of acetone between 36 GHz and 910 GHz in order to study 13CH3C(O)CH3 in natural isotopic composition. In addition, we searched for emission lines produced by these species in a molecular line survey of Sagittarius B2(N) carried out with the Atacama Large Millimeter/submillimeter Array (ALMA). Discrepancies between predictions of the main isotopic species and the ALMA spectrum prompted us to revisit the rotational spectrum of this isotopolog. Results. We assigned 9711 new transitions of CH313C(O)CH3 and 63 new transitions of 13CH3C(O)CH3 in the laboratory spectra. More than 1000 additional transitions were assigned for the main isotopic species. We modeled the ground state data of all three isotopologs satisfactorily with the ERHAM program. We find that models of the torsionally excited states v12 = 1 and v17 = 1 of CH3C(O)CH3 improve only marginally. No transitrrrion of CH313C(O)CH3 is clearly detected toward the hot molecular core Sgr B2(N2). However, we report a tentative detection of 13CH3C(O)CH3 with a 12C/13C isotopic ratio of 27 that is consistent with the ratio previously measured for alcohols in this source. Several dozens of transitions of both torsional states of the main isotopolog are detected as well. Conclusion. Our predictions of CH313C(O)CH3 and CH3C(O)CH3 are reliable into the terahertz region. The spectrum of 13CH3C(O)CH3 should be revisited in the laboratory with an enriched sample. The torsionally excited states v12 = 1 and v17 = 1 of CH3C(O)CH3 were not reproduced satisfactorily in our models. Nevertheless, transitions pertaining to both states could be identified unambiguously in Sagittarius B2(N2).


1994 ◽  
Vol 72 (11-12) ◽  
pp. 1043-1050 ◽  
Author(s):  
Masaharu Fujitake ◽  
Eizi Hirota

The rotational spectrum of the ClS2 free radical in the gaseous phase has been observed in the millimetre- and submillimetre-wave regions. The ClS2 radical was generated by a dc glow discharge in either S2Cl2 or SCl2. Both a- and b-type R-branch transitions, most of which were split into two fine structure components, were detected for both of the 35Cl and 37Cl isotopic species in the ground vibronic state. As expected from the small hyperfine interaction constants reported by an electron spin resonance (ESR) study, the hyperfine structure was resolved for none of the transitions observed in the present study. Analysis of the observed transition frequencies yielded rotational and centrifugal distortion constants and also spin–rotation interaction constants with their centrifugal corrections. The spin–rotation interaction constants obtained in the present study were consistent with g values of the ESR study. The rotational constants of the two isotopic species led to the structure parameters r(S—S) = 1.906 (7) Å, r(S—Cl) = 2.071 (5) Å, and θ(SSCl) = 110.3 (4)°. A harmonic force field was derived from the observed centrifugal distortion constants and inertial defects combined with the ν1 frequency reported in literature on electronic spectroscopy. This harmonic force field yielded the ν2 and ν3 frequencies (445 (21) and 213.0 (2) cm−1, respectively, for 35ClS2), which differed considerably from the values reported previously.


1980 ◽  
Vol 58 (11) ◽  
pp. 1640-1648 ◽  
Author(s):  
R. M. Lees ◽  
M. Ali Mohammadi

An investigation of the rotational spectrum of CH332SH, one of the most recent molecules to be detected in the interstellar medium, has been carried out over the 25–107 GHz region. The frequencies of a-type Δk = 0 R-branch transitions have been measured for the J = 1 ← 0 up to J = 4 ← 3 multiplets for torsional states νt = 0–3. In addition, many P-, Q-, and R-branch transitions with Δk ≠ 0 have been identified in order to provide a catalogue of lines for potential radio astronomical applications. Improved values of rotational and centrifugal distortion constants, a-type torsion–vibration–rotation interaction constants, and torsional barrier parameters (V3 = 444.76 cm−1; effective V6 = −2.07 cm−1) have been determined from least-squares analyses of the spectra.


The microwave rotational spectrum of the hydrogen-bonded heterodimer CH 3 CN • • • HF has been identified and shown to be characteristic of a symmetric top. A detailed analysis of several rotational transitions for a variety of isotopic species gives the spectroscopic constants summarized in the following table: Rotational constants/MHz, vibration-rotation constants/MHz and vibrational separations/cm -1 of CH 3 CN • • • HF


2016 ◽  
Vol 18 (36) ◽  
pp. 25756-25763 ◽  
Author(s):  
R. L. Hudson

Three solid phases of CH3SH (methanethiol or methyl mercaptan) have been prepared and their mid-infrared spectra recorded at 10–110 K, with an emphasis on the 17–100 K region.


2019 ◽  
Vol 621 ◽  
pp. A114 ◽  
Author(s):  
Olena Zakharenko ◽  
Frank Lewen ◽  
Vadim V. Ilyushin ◽  
Maria N. Drozdovskaya ◽  
Jes K. Jørgensen ◽  
...  

Methyl mercaptan (also known as methanethiol), CH3SH, has been found in the warm and dense parts of high- as well as low- mass star-forming regions. The aim of the present study is to obtain accurate spectroscopic parameters of the S-deuterated methyl mercaptan CH3SD to facilitate astronomical observations by radio telescope arrays at (sub)millimeter wavelengths. We have measured the rotational spectrum associated with the large-amplitude internal rotation of the methyl group of methyl mercaptan using an isotopically enriched sample in the 150−510 GHz frequency range using the Köln millimeter wave spectrometer. The analysis of the spectra has been performed up to the second excited torsional state. We present modeling results of these data with the RAM36 program. CH3SD was searched for, but not detected, in data from the Atacama Large Millimeter/submillimeter Array (ALMA) Protostellar Interferometric Line Survey (PILS) of the deeply embedded protostar IRAS 16293−2422. The derived upper limit corresponds to a degree of deuteration of at most ∼18%.


Sign in / Sign up

Export Citation Format

Share Document