torsion vibration
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 7)

H-INDEX

21
(FIVE YEARS 0)

2021 ◽  
Vol 2101 (1) ◽  
pp. 012028
Author(s):  
Zhirong Yang ◽  
Lintao Li ◽  
Jiacheng Yao ◽  
Qingkai Wang

Abstract A torsion vibration isolator composed of oblique springs with high-static-low-dynamic stiffness (HSLDS) is proposed to attenuate the transmission of torsion vibration along the shipping shaft in this paper. It is good at in low frequency vibration isolation as it can significantly reduce the resonance frequency of the system with the same load capability. Firstly, the model of HSLDS torsion vibration isolator is introduced in this paper. Secondly, the non-dimensional torsion stiffness is formulated using mechanics theory, and the HSLDS characteristic of designed torsion vibration isolator is verified. Finally, the torque transmissibility is analyzed using the Increment Harmonic Balance (IHB) method, and the effects of the system parameters on it are analyzed. The results show that the resonant frequency increases accordingly as the stiffness ratio and the excitation torque are increased. However, the peak value of the torsion transmissibility is decreased as the damper ratio increasing.


2021 ◽  
Vol 155 (12) ◽  
pp. 124306
Author(s):  
Jason R. Gascooke ◽  
Dominique Appadoo ◽  
Warren D. Lawrance

2021 ◽  
Vol 263 (3) ◽  
pp. 3545-3553
Author(s):  
Hyeongill Lee ◽  
Youkyung Han ◽  
Byeongil Kim

The drivetrain of wind turbines consists of many complicated rotary elements such as planetary gear, parallel gear train, bearing etc. The drivetrain of the wind turbine are studied with many different modeling techniques in several works. However, the things come to complicated when considering a complete drivetrain of a wind turbine. In this study, the transfer matrix method will be utilized to analyze the torsional vibration of a sample wind turbine drivetrain. Each element in the drivetain of the sample wind turbine is modeled with a specific transfer matrix and the matrix for the whole drivetrain is derived by serial multiplications of individual matrices. Dynamic characteristics of the drivetrain are investigated with derived matrix. Then, the application of a centrifugal pendulum absorber(CPA) to the drivetrain to attenuate the torsional vibration in the system is studied. The transfer matrix for the CPA introduced in the previous study is used to determine the optimal configuration and location of the CPA. The CPA shows good performance on the torsion vibration reduction for the drivetrain of the sample wind turbine.


2021 ◽  
Vol 1945 (1) ◽  
pp. 012043
Author(s):  
I S Nikitin ◽  
A D Nikitin ◽  
B A Stratula
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Thanh Q. Nguyen ◽  
Thao D. Nguyen ◽  
Lam Q. Tran ◽  
Nhi K. Ngo

We propose a novel representative power spectrum density as a specific characteristic for showing responses of spans during a long operational period. The idea behind this method is to use the representative power spectrum density as a powerful tool to evaluate the stiffness decline of spans during their operation period. In addition, a new measurement method has been introduced to replace the traditional method of monitoring the health conditions of bridges through a periodic measurement technique. This helps to reduce costs when carrying out testing bridges. Besides, the proposed approach can be widely applied not only in Vietnam but also in many other underprivileged countries around the world. Obtained results show that, during the operational process of spans, there is not only a pure vibration evaluation such as bending vibration and torsion vibration tests but also a combination of various vibration types including bending-torsion vibration or high-level vibrations like first-mode bending and first-mode torsion. Depending on each type of structure and material properties, different types of vibrations will appear more or less during the operational process of spans under a random moving load. Furthermore, the representative power spectrum density is also suitable for evaluating and determining many different fundamental vibrations through the same measurement time as well as various measurement times.


2018 ◽  
Vol 25 (s2) ◽  
pp. 85-91 ◽  
Author(s):  
Liang-xiong Dong ◽  
Yi-ran Shi ◽  
Shao-hua Wang

Abstract The anti-impact ability of shafting affects stability and security of the ship power transmission directly. Moreover, it also cannot be ignored that the rub-impact loads have influence on the torsion vibration of ship shafting. In order to solve the problem of engineering application of reliability assessment under rub-impact loads, a test rig with rubbing generator is established. By carrying out the integrative analysis, the torsional vibration characteristics, such as vibration amplitude and orbit of axle center under the rub impact load are studied. According to the rub-impact conditions obtained through numerical simulation, the experimental verification is carried out on the test rig with rubbing generator. The results show that it is not obvious the influence of rub-impact loads upon the shafting torsion vibration except in special working conditions, that can be simulated by the rubbing generator. The maximum amplitude of torsional vibration is influenced by the radial rigidity as well as the friction coefficient of rubbing body, and the degree of influence is difference under conditions of continuous rubbing and serious rubbing. By adjusting the rigidity of stern bearing, the influence of rub-impact upon shafting can be weaken, which provides a theoretical reference for the safety evaluation of ship shafting.


Sign in / Sign up

Export Citation Format

Share Document