Evaluation of virus-induced gene silencing methods for forage legumes including alfalfa, sainfoin, and fenugreek

2019 ◽  
Vol 99 (6) ◽  
pp. 917-926 ◽  
Author(s):  
Champa Wijekoon ◽  
Stacy D. Singer ◽  
Randall J. Weselake ◽  
Udaya Subedi ◽  
Surya N. Acharya

Virus-induced gene silencing (VIGS) is a rapid reverse genetics tool that has been developed in a wide variety of plant species for assessing gene functions. However, while VIGS has been utilized successfully in the diploid model leguminous species Medicago truncatula (Gaertn.) (barrel medic), such a platform has yet to be established in forage legume crop species. Therefore, we evaluated the effectiveness of this method in forage legumes using a previously developed PEBV (pea early browning virus) system whereby a fragment of the pea (Pisum sativum L.) PHYTOENE DESATURASE (PDS) gene was transferred into a range of alfalfa (Medicago sativa L.), sainfoin (Onobrychis viciifolia Scop.), and fenugreek (Trigonella foenum-graecum L.) cultivars using leaf infiltration and apical meristem injection. Barrel medic was used as a positive control. Gene silencing was observed after 10–15 d through the presence of a leaf bleaching phenotype, and was confirmed using quantitative real-time RT-PCR. Silencing of PDS was achieved in a selection of cultivars in all species assessed, with the highest silencing efficiency apparent in fenugreek. The introduction of a highly homologous gene fragment from a heterologous plant species to target endogenous genes for transient VIGS-based silencing in a range of species of interest represents a potentially useful strategy for the rapid functional characterization of candidate genes in forages.

2012 ◽  
Vol 10 (8) ◽  
pp. 970-978 ◽  
Author(s):  
Xianbao Deng ◽  
Paula Elomaa ◽  
Cuong X. Nguyen ◽  
Timo Hytönen ◽  
Jari P. T. Valkonen ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7001
Author(s):  
Lihang Xie ◽  
Qingyu Zhang ◽  
Daoyang Sun ◽  
Weizong Yang ◽  
Jiayuan Hu ◽  
...  

Tree peony is a perennial deciduous shrub with great ornamental and medicinal value. A limitation of its current functional genomic research is the lack of effective molecular genetic tools. Here, the first application of a Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) in the tree peony species Paeonia ostii is presented. Two different approaches, leaf syringe-infiltration and seedling vacuum-infiltration, were utilized for Agrobacterium-mediated inoculation. The vacuum-infiltration was shown to result in a more complete Agrobacterium penetration than syringe-infiltration, and thereby determined as an appropriate inoculation method. The silencing of reporter gene PoPDS encoding phytoene desaturase was achieved in TRV-PoPDS-infected triennial tree peony plantlets, with a typical photobleaching phenotype shown in uppermost newly-sprouted leaves. The endogenous PoPDS transcripts were remarkably down-regulated in VIGS photobleached leaves. Moreover, the green fluorescent protein (GFP) fluorescence was detected in leaves and roots of plants inoculated with TRV-GFP, suggesting the capability of TRV to silence genes in various tissues. Taken together, the data demonstrated that the TRV-based VIGS technique could be adapted for high-throughput functional characterization of genes in tree peony.


2005 ◽  
Vol 138 (4) ◽  
pp. 2155-2164 ◽  
Author(s):  
Ingo Hein ◽  
Maria Barciszewska-Pacak ◽  
Katarina Hrubikova ◽  
Sandie Williamson ◽  
Malene Dinesen ◽  
...  

Planta ◽  
2006 ◽  
Vol 225 (3) ◽  
pp. 523-539 ◽  
Author(s):  
M. Senthil-Kumar ◽  
Geetha Govind ◽  
Li Kang ◽  
Kirankumar S. Mysore ◽  
M. Udayakumar

2010 ◽  
Vol 189 (2) ◽  
pp. 471-483 ◽  
Author(s):  
Karina van der Linde ◽  
Christine Kastner ◽  
Jochen Kumlehn ◽  
Regine Kahmann ◽  
Gunther Doehlemann

Author(s):  
Tushar Ranjan ◽  
Namaste Kumari ◽  
Sangita Sahni ◽  
Bishun Deo Prasad

Virus-induced gene silencing (VIGS) is a powerful reverse genetics technology used to unravel the functions of genes. It uses viruses as vectors to carry targeted plant genes. The virus vector is used to induce RNA-mediated silencing of a gene or genes in the host plant. The process of silencing is triggered by dsRNA molecules, the mechanism is explained in this chapter. Over the years a large number of viruses have been modified for use as VIGS vectors and a list of these vectors is also included. As the name suggests, virus-induced gene silencing uses the host plant’s natural defense mechanisms against viral infection to silence plant genes. VIGS is methodologically simple and is widely used to determine gene functions, including disease resistance, abiotic stress, biosynthesis of secondary metabolites and signal transduction pathways. Here, we made an attempt to describe the basic underlying molecular mechanism of VIGS, the methodology and various experimental requirements, as well as its advantages and disadvantages. Finally, we discuss the future prospects of VIGS in relation to CRISPR/Cas9 technology. Besides using it to overexpress or silence genes, VIGS has emerged as the preferred delivery system for the cutting edge CRISPR/Cas9 genome editing technology.


Sign in / Sign up

Export Citation Format

Share Document