THE COEFFICIENT OF HEAT TRANSFER FOR VERTICAL SURFACES IN STILL AIR

1937 ◽  
Vol 15a (7) ◽  
pp. 109-117
Author(s):  
R. Ruedy

For a vertical plane surface in still air the coefficient of heat transfer, valid within the range of temperatures occurring in buildings, depends on the temperature and the height of the surface. If black body conditions are assumed for the heat lost by radiation, the coefficient is equal to 1.39, 1.50, 1.62, and 1.73 B.t.u. per sq. ft. per ° F. at 32°, 50°, 68°, and 86° F. respectively, the height of the heated surfaces being 100 cm. Convection is responsible for about one-third, and radiation, mainly in the region of 10 microns, for about two-thirds of the heat loss. Convection currents depend on the temperature difference, while radiation depends on the average temperature. When attempts are made to stop convection currents by placing obstacles across the surface, the loss of heat due to natural convection varies inversely as the fourth root of the height, providing that the nature of the flow of air remains unchanged.

Author(s):  
Pablo E. Araya Go´mez ◽  
Miles Greiner

Two-dimensional simulations of steady natural convection and radiation heat transfer for a 14×14 pressurized water reactor (PWR) spent nuclear fuel assembly within a square basket tube of a typical transport package were conducted using a commercial computational fluid dynamics package. The assembly is composed of 176 heat generating fuel rods and 5 larger guide tubes. The maximum cladding temperature was determined for a range of assembly heat generation rates and uniform basket wall temperatures, with both helium and nitrogen backfill gases. The results are compared with those from earlier simulations of a 7×7 boiling water reactor (BWR). Natural convection/radiation simulations exhibited measurably lower cladding temperatures only when nitrogen is the backfill gas and the wall temperature is below 100°C. The reduction in temperature is larger for the PWR assembly than it was for the BWR. For nitrogen backfill, a ten percent increase in the cladding emissivity (whose value is not well characterized) causes a 4.7% reduction in the maximum cladding to wall temperature difference in the PWR, compared to 4.3% in the BWR at a basket wall temperature of 400°C. Helium backfill exhibits reductions of 2.8% and 3.1% for PWR and BWR respectively. Simulations were performed in which each guide tube was replaced with four heat generating fuel rods, to give a homogeneous array. They show that the maximum cladding to wall temperature difference versus total heat generation within the assembly is not sensitive to this geometric variation.


Author(s):  
Patrick H. Oosthuizen

A numerical study of natural convective heat transfer from a heated isothermal vertical plane surface has been considered. There are relatively short horizontal adiabatic surfaces normal to the isothermal surface at the top and bottom of this isothermal surface these horizontal adiabatic wall surfaces then being joined to vertical adiabatic surfaces. There is a thin surface that offers no resistance to heat transfer that is parallel to the vertical isothermal surface and which partly covers this surface. The situation considered is a simplified model of a window, which is represented by the vertical isothermal wall section, that is recessed in a frame, which is represented by the horizontal adiabatic surfaces, which is mounted in a vertical wall, which is represented by the vertical adiabatic surfaces, and which is exposed to a large surrounding room. The window is covered by a partially open plane blind which is represented by the vertical thin surface that offers no resistance to heat transfer. The flow has been assumed to be laminar and two-dimensional. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces. The governing equations, written in dimensionless form, have been solved using a commercial finite-element based code. Results have only been obtained for a Prandtl number of 0.7.


1960 ◽  
Vol 38 (4) ◽  
pp. 679-688 ◽  
Author(s):  
C. P. Lentz ◽  
J. S. Hart

The effects of air velocity and direction and of wetness on rate of heat transfer were studied in tests with samples of fur from five caribou calves. The rate of heat transfer through this fur increased by a factor of two to three with increase in air velocity from a negligible level (natural convection) to 23 m/second (direction parallel to sample). The effect of air velocity varied markedly (up to ±50% at 23 m/second) with inclination of the sample to the direction of air movement. Spraying water on the fur increased its rate of heat transfer markedly; addition of water equivalent to 10–12% of the volume of the fur doubled the rate of heat transfer. Other factors, such as erectness of the fur, direction of the hairs or "grain" of the fur with respect to the direction of air movement, and wetness of the skin also affected heat transfer. Differences between samples were large and did not appear to depend directly on the physical characteristics measured.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sayuj Sasidharan ◽  
Pradip Dutta

Purpose This paper aims to deal with characterisation of the thermal performance of a hybrid tubular and cavity solar thermal receiver. Design/methodology/approach The coupled optical-flow-thermal analysis is carried out on the proposed receiver design. Modelling is performed in two and three dimensions for estimating heat loss by natural convection for an upward-facing cavity. Heat loss obtained in two dimensions by solving coupled continuity, momentum and energy equation inside the cavity domain is compared with the loss obtained using an established Nusselt number correlation for realistic receiver performance prediction. Findings It is found that radiation emission from a heated cavity wall to the ambient is the dominant mode of heat loss from the receiver. The findings recommend that fluid flow path must be designed adjacent to the surface exposed to irradiation of concentrated flux to limit conduction heat loss. Research limitations/implications On-sun experimental tests need to be performed to validate the numerical study. Practical implications Numerical analysis of receivers provides guidelines for effective and efficient solar thermal receiver design. Social implications Pressurised air receivers designed from this method can be integrated with Brayton cycles using air or supercritical carbon-dioxide to run a turbine generating electricity using a solar heat source. Originality/value The present paper proposes a novel method for coupling the flux map from ray-tracing analysis and using it as a heat flux boundary condition for performing coupled flow and heat transfer analysis. This is achieved using affine transformation implemented using extrusion coupling tool from COMSOL Multiphysics software package. Cavity surface natural convection heat transfer coefficient is obtained locally based on the surface temperature distribution.


2004 ◽  
Vol 127 (7) ◽  
pp. 780-784 ◽  
Author(s):  
C. C. Ngo ◽  
F. C. Lai

Natural convection from a buried pipe with a layer of backfill is numerically examined in this study. The objective of the present study is to investigate how a step change in the permeability of the backfill would affect the flow patterns and heat transfer results. Numerical calculations have covered a wide range of the governing parameters (i.e., 10⩽Ra1⩽500 and 0.1⩽K1∕K2⩽10) for various backfill thicknesses (0.5⩽t∕ri⩽2). The results suggest that a more permeable backfill can minimize the heat loss and confine the flow to a region close to the pipe.


Sign in / Sign up

Export Citation Format

Share Document