Diet and isotopic niche of eastern sand darter (Ammocrypta pellucida) near the northern edge of its range: a test of niche specificity

2019 ◽  
Vol 97 (9) ◽  
pp. 763-772 ◽  
Author(s):  
Jacob Burbank ◽  
Mary Finch ◽  
D. Andrew R. Drake ◽  
Michael Power

Niche specificity can predispose species to population declines during periods of resource limitation, yet trophic niche specificity is poorly known for many small-bodied freshwater fishes. Applying a two-tiered approach involving stomach content and stable isotope analyses, we examined the diet and trophic niche of the threatened eastern sand darter (Ammocrypta pellucida (Putnam, 1863)) and co-occurring fishes in the Thames River, Ontario, Canada. As with previous studies, stomach content analysis revealed that eastern sand darter consumed a variety of benthic organisms including Chironomidae, Cladocera, Ostracoda, Oligochaeta, and Ephemeroptera; however, proportional contributions of prey groups differed based on stable isotope analysis, highlighting the potential for seasonal variation in prey consumption. Despite evidence of a generalist strategy, stable isotope analysis indicated eastern sand darter exhibited a relatively narrow trophic niche relative to co-occurring fishes. Trophic niche overlap was relatively minor between eastern sand darter and drift-feeding fishes (spotfin shiner (Cyprinella spiloptera (Cope, 1867)), emerald shiner (Notropis atherinoides Rafinesque, 1818), and buffalo sp. (genus Ictiobus Rafinesque, 1820)), but was more evident between eastern sand darter and benthic and benthopelagic fishes (johnny darter (Etheostoma nigrum Rafinesque, 1820) and blackside darter (Percina maculata (Girard, 1859))), indicating that competition with these species may be more likely during periods of prey scarcity.

2020 ◽  
Vol 655 ◽  
pp. 157-170
Author(s):  
OR O’Shea ◽  
MH Meadows ◽  
EE Wrigglesworth ◽  
J Newton ◽  
LA Hawkes

Caribbean whiptail and southern stingrays are large-bodied mesopredators, occupying shallow, nearshore ecosystems of The Bahamas, yet virtually nothing is known of their diet or potential resource competition. We used stomach content analysis via gastric lavage and stable isotope analysis to investigate the diet of 94 Caribbean whiptail rays Styracura schmardae and 112 southern stingrays Hypanus americanus across 3 locations in the central Bahamas. Gastric lavage was used to identify prey consumed and compared to stable isotope analysis of δ15N, δ13C and δ34S of barb, muscle, blood and skin, representing different temporal integration periods. Both species appeared to consume a majority of crustaceans and annelids, although δ13C values suggested that Caribbean whiptail rays have larger isotopic niche space across isotopes sampled (potentially broader diet) than southern stingrays, ranging from 5.82-3.43‰2, and a greater variance in δ13C. This suggests Caribbean whiptail rays potentially feed on prey from either a wider geographic range or from different habitats. Caribbean whiptail and southern stingrays are known to spatio-temporally overlap, and their isotopic niche overlapped by 35.6%. This study represents the first integrated diet estimate for southern stingrays obtained using multiple techniques, and the first ever diet assessment in Caribbean whiptail rays. These data are critical for conservation of coastal ray species and management of coastal and nearshore environments throughout the region.


2020 ◽  
Vol 146 (1) ◽  
Author(s):  
Gilles Lepoint ◽  
Loïc N. Michel ◽  
Eric Parmentier ◽  
Bruno Frédérich

Many damselfishes (Pomacentridae) are herbivorous or omnivorous with an important contribution from different kinds of algae in their diet. They display different levels of territoriality and farming behavior, from almost non territorial to monoculture farmers. In addition, a few species inhabit seagrass meadows but, presently, none can be considered as seagrass-eating specialists. The footballer demoiselle, Chrysiptera annulata, is found in the seagrass meadows on the reef flat of the Great Reef of Toliara (Madagascar, Mozambique Channel). In the light of this unusual habitat for a pomacentrid, this study aimed to answer three questions: 1) What is the diet of C. annulata? 2) Do the resources supporting this diet include seagrass? 3) Does its trophic niche overlap those of other sympatric damselfishes (Pomacentrus trilineatus, Chrysiptera unimaculata and Plectroglyphidodon lacrymatus) living in close association with macrophytes or eating algae? Stomach content examination and stable isotope analysis showed that the footballer demoiselle is not a seagrass consumer but is an omnivorous/herbivorous species heavily relying on algal resources and small invertebrates. SIAR, a stable isotope mixing model, indicated it assimilated large amounts of turf algae, and various benthic or planktonic invertebrates in lower proportions. SIBER metrics revealed that the isotopic niche of the footballer demoiselle partly overlaps that of its congener, C. unimaculata, but not those of P. trilineatus and P. lacrymatus. Trophic strategies of C. annulata differed both from farming species such as P. lacrymatus and from less territorial herbivores such as P. trilineatus. Its seagrass meadow habitat on the Great Reef of Toliara allows the conquest of an unusual habitat for damselfishes and could limit competition with C. unimaculata, a species displaying the same territorial behavior and the same isotopic niche but living on the reef itself.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1578 ◽  
Author(s):  
Nancy Cabanillas-Terán ◽  
Peggy Loor-Andrade ◽  
Ruber Rodríguez-Barreras ◽  
Jorge Cortés

Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP).Diadema mexicanumandEucidaris thouarsiiare the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation.Eucidaris thouarsiiis the dominant species in disturbed environments; likewise, their niche amplitude was broader than that ofD. mexicanumwhen conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainlyDictyotaspp. (contributions of up to 85% forD. mexicanumand up to 75% forE. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation.


2016 ◽  
Vol 18 (12) ◽  
pp. 3611-3621 ◽  
Author(s):  
Paride Balzani ◽  
Salvatrice Vizzini ◽  
Giacomo Santini ◽  
Alberto Masoni ◽  
Claudio Ciofi ◽  
...  

Author(s):  
Kelsey Johnson ◽  
Gail Davoren

On the Newfoundland, Canada foraging ground, humpback whales (Megaptera novaeangliae (Borowski, 1781)) are found associated with a dominant forage fish species, capelin (Mallotus villosus (Müller, 1776), that experienced a population collapse in the early 1990s and has not recovered. Our primary goal was to reconstruct dietary proportions of humpback whales on their summer foraging grounds off the northeastern Newfoundland coast during July-August, 2016 and 2017 using a Bayesian stable isotope mixing model (MixSiar). Modelled dietary proportions were similar in both years, with capelin comprising ~90% of the diet. However, both δ13C and δ15N in humpback whale skin differed significantly between years, resulting in minimal dietary niche overlap (9%). Lipid-extracted and nonlipid-extracted skin samples were used to develop a lipid normalization equation: ∆13C = – 3.184 + 1.011(C:N). Overall, findings suggest that capelin is the primary prey type of humpback whales in coastal Newfoundland, despite the continued collapsed state of the capelin population. Findings also reiterate that dietary reconstruction from stable isotope analysis of cetacean skin can be misinterpreted without concurrently sampled isotopic ratios of potential prey types.


2020 ◽  
Vol 636 ◽  
pp. 107-121
Author(s):  
SEM Munroe ◽  
CL Rigby ◽  
NE Hussey

Quantifying the trophic structure and interactions of deepwater (>200 m depth) elasmobranch assemblages is required to improve our understanding of deepwater ecosystems and the impacts of increased deepwater exploitation. To this end, we investigated the trophic ecology of deepwater elasmobranchs on the Great Barrier Reef (GBR) using a stable isotope (δ13C and δ15N) approach. Our study included 4 species captured in the southern GBR deepwater eastern king prawn trawl fishery: the eastern spotted gummy shark Mustelus walkeri, the piked spurdog Squalus megalops, the pale spotted catshark Asymbolus pallidus, and the Argus skate Dentiraja polyommata. The δ13C and δ15N values of all 4 species ranged from -18.6 to -16.2‰ and 8.3 to 13.8‰, respectively. The small δ13C range was likely due to the limited number of unique carbon baseline sources typically found in deepwater environments. Despite this, 3 of the 4 species exhibited relatively low core (40% SEAb) isotopic niche overlap (<1 to 44%). Isotopic niche separation may be driven by multiple interacting factors including morphology, feeding strategies, or resource partitioning to reduce competition. Isotope analysis also provided evidence for intraspecific variation; S. megalops, D. polyommata and M. walkeri exhibited significant increases in δ15N (~3‰) and δ13C (~2‰) with size. Latitude, longitude, and depth had statistically significant but comparatively minor effects on isotope values (≤1‰) of the 4 species. Cumulatively, our results indicate that isotopic variation among deepwater elasmobranchs on the GBR is principally driven by size and species-level differences in resource use.


Sign in / Sign up

Export Citation Format

Share Document