prey type
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 47)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Balint Stewart ◽  
Nicole Gruenheit ◽  
Amy Baldwin ◽  
Rex Chisholm ◽  
Daniel Rozen ◽  
...  

AbstractNatural selection should favour generalist predators that outperform specialists across all prey types. Two genetic solutions could explain why intraspecific variation in predatory performance is, nonetheless, widespread: mutations beneficial on one prey type are costly on another (antagonistic pleiotropy), or mutational effects are prey-specific, which weakens selection, allowing variation to persist (relaxed selection). To understand the relative importance of these alternatives, we characterised natural variation in predatory performance in the microbial predator Dictyostelium discoideum. We found widespread nontransitive differences among strains in predatory success across different bacterial prey, which can facilitate stain coexistence in multi-prey environments. To understand the genetic basis, we developed methods for high throughput experimental evolution on different prey (REMI-seq). Most mutations (~77%) had prey-specific effects, with very few (~4%) showing antagonistic pleiotropy. This highlights the potential for prey-specific effects to dilute selection, which would inhibit the purging of variation and prevent the emergence of an optimal generalist predator.


2021 ◽  
Vol 2 (4) ◽  
pp. 705-715
Author(s):  
Kimberley C. Carter ◽  
Léa Fieschi-Méric ◽  
Francesca Servini ◽  
Mark Wilkinson ◽  
David J. Gower ◽  
...  

Maintaining Gymnophiona in captivity provides opportunities to study the behaviour and life-history of this poorly known Order, and to investigate and provide species-appropriate welfare guidelines, which are currently lacking. This study focuses on the terrestrial caecilian Herpele squalostoma to investigate its sensitivity to disturbances associated with routine husbandry needed for monitoring and maintaining adequate wellbeing in captivity. Fossorial caecilians gradually pollute their environment in captivity with waste products, and substrate must be replaced at intervals; doing so disturbs the animals directly and via destruction of burrow networks. As inappetence is frequently associated with stress in amphibians, the percentage consumption of offered food types, river shrimp (Palaemon varians) and brown crickets (Gryllus assimilis), was measured as an indicator of putative stress following three routine substrate changes up to 297 days post-substrate change. Mean daily variation in substrate temperatures were also recorded in order to account for environmental influences on food consumption, along with nitrogenous waste in tank substrate prior to a substrate change and fresh top soil in order to understand the trade-off between dealing with waste accumulation and disturbing animals. We found a significant negative effect of substrate disturbance on food intake, but no significant effect of prey type. Variations in daily soil temperatures did not have a significant effect on food intake, but mean substrate temperature did. Additionally, substrate nitrogenous waste testing indicated little difference between fresh and tank substrate. In conclusion, this study provides a basis from which to develop further welfare assessment for this and other rarely kept and rarely observed terrestrial caecilian species.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12608
Author(s):  
Nelle Meyers ◽  
Cassie N. Speakman ◽  
Nicole A.S.-Y. Dorville ◽  
Mark A. Hindell ◽  
Jayson M. Semmens ◽  
...  

Knowledge of the factors shaping the foraging behaviour of species is central to understanding their ecosystem role and predicting their response to environmental variability. To maximise survival and reproduction, foraging strategies must balance the costs and benefits related to energy needed to pursue, manipulate, and consume prey with the nutritional reward obtained. While such information is vital for understanding how changes in prey assemblages may affect predators, determining these components is inherently difficult in cryptic predators. The present study used animal-borne video data loggers to investigate the costs and benefits related to different prey types for female Australian fur seals (Arctocephalus pusillus doriferus), a primarily benthic foraging species in the low productivity Bass Strait, south-eastern Australia. A total of 1,263 prey captures, resulting from 2,027 prey detections, were observed in 84.5 h of video recordings from 23 individuals. Substantial differences in prey pursuit and handling times, gross energy gain and total energy expenditure were observed between prey types. Importantly, the profitability of prey was not significantly different between prey types, with the exception of elasmobranchs. This study highlights the benefit of animal-borne video data loggers for understanding the factors that influence foraging decisions in predators. Further studies incorporating search times for different prey types would further elucidate how profitability differs with prey type.


2021 ◽  
Vol 169 (1) ◽  
Author(s):  
Lucie Michel ◽  
Marco Cianchetti-Benedetti ◽  
Carlo Catoni ◽  
Giacomo Dell’Omo

Abstract Conventional bio-logging techniques used for ethological studies of seabirds have their limitations when studying detailed behaviours at sea. This study uses animal-borne video cameras to reveal fine-scale behaviours, associations with conspecifics and other species and interactions with fishery vessels during foraging of a Mediterranean seabird. The study was conducted on Scopoli's shearwaters (Calonectris diomedea) breeding in Linosa island (35°51′33″ N; 12°51′34″ E) during summer 2020. Foraging events were video recorded from a seabirds' view with lightweight cameras attached to the birds' back. Foraging always occurred in association with other shearwaters. Competitive events between shearwaters were observed, and their frequency was positively correlated to the number of birds in the foraging aggregation. Associations with tunas and sea turtles have been frequent observations at natural foraging sites. During foraging events, video recordings allowed observations of fine-scale behaviours, which would have remained unnoticed with conventional tracking devices. Foraging events could be categorised by prey type into “natural prey” and “fishery discards”. Analysis of the video footage suggests behavioural differences between the two prey type categories. Those differences suggest that the foraging effort between natural prey and fishery discards consumption can vary, which adds new arguments to the discussion about energy trade-offs and choice of foraging strategy. These observations highlight the importance of combining tracking technologies to obtain a complete picture of the at-sea behaviours of seabirds, which is essential for understanding the impact of foraging strategies and seabird-fishery interactions. Graphical abstract


2021 ◽  
Vol 13 (19) ◽  
pp. 10793
Author(s):  
Romaan Hayat Khattak ◽  
Liwei Teng ◽  
Tahir Mehmood ◽  
Shakeel Ahmad ◽  
Fathul Bari ◽  
...  

The high economic costs of human–wildlife conflicts (HWC) hinder long-term conservation successes, especially in developing countries. We investigated HWC by interviewing 498 respondents from 42 villages in Nowshera district, Pakistan. According to respondents, six species—the common leopard (Panthera pardus), grey wolf (Canis lupus), golden jackal (Canis aureus), red fox (Vulpes vulpes), Indian porcupine (Hystrix indica), and wild boar (Sus scrofa)—were involved in livestock predation and crop-raiding. Livestock predation (N = 670) translated into a total annual economic loss of USD 48,490 across the 42 villages, with the highest economic loss of USD 57.1/household/year attributed to the golden jackal. Crop damage by wild boar and porcupine incurred a total annual economic loss of USD 18,000. Results further showed that livestock predation was highly affected by location, prey type, prey age, and herding practices, while cereals and vegetables were preferred crops for wild boar and Indian porcupine. The grey wolf was declared as the most dangerous carnivore, followed by the golden jackal and common leopard. Negative attitude about golden jackal and wild boar prevails among 90% of the respondents of the study area. We strongly assume that the abundance of apex predators can control the economic impacts of meso-carnivores and wild boar on the community’s livelihood. Keeping relatively smaller herds may reduce carnivore attacks and educating the populous and compensation can minimise negative perceptions of HWC. To reduce HWC in the study area, there should be an incessant and timely coordination between wildlife officials and the local community.


2021 ◽  
Author(s):  
Matthew Brenton Patterson ◽  
Ashleigh K Wolfe ◽  
Patricia A Fleming ◽  
Philip W Bateman ◽  
Meg Martin ◽  
...  

Abstract As snakes are limbless, gape-limited predators, their skull is the main feeding structure involved in prey handling, manipulation and feeding. Ontogenetic changes in prey type and size are likely to be associated with distinct morphological changes in the skull during growth. We investigated ontogenetic variation in diet from stomach contents of n = 161 dugite specimens (Pseudonaja affinis, Elapidae) representing the full range of body size for the species, and skull morphology of 46 specimens (range 0.25–1.64 m snout-vent-length; SVL). We hypothesised that changes in prey type throughout postnatal ontogeny would coincide with distinct changes in skull shape. Dugites demonstrate a distinct size-related shift in diet: the smallest individuals ate autotomised reptile tails, medium-sized individuals predominantly ate small reptiles (as snakes grew larger there was an increased likelihood of feeding on reptiles head-first), and the largest individuals (> 0.8 m SVL) ate mammals and large reptiles. Morphometric analysis revealed that ~ 40% of the variation in skull shape was associated with body size (SVL). Through ontogeny, skulls changed from a smooth, bulbous cranium with relatively small trophic bones (upper and lower jaws and their attachments), to more rugous bones (as an adaption for muscle attachment) and relatively longer trophic bones that would extend gape. Individual shape variation in trophic bone dimensions was greater in larger adults and this likely reflects natural plasticity of individuals feeding on different prey sizes/types. Rather than a distinct morphological shift with diet, the ontogenetic changes were consistent, but positive allometry of individual trophic bones resulted in disproportionate growth of the skull, reflected in increased gape size and mobility of jaw bones in adults to aid the ingestion of larger prey and improve manipulation and processing ability. These results indicate that allometric scaling is an important mechanism by which snakes can change their dietary niche.


2021 ◽  
Vol 12 ◽  
Author(s):  
Irina Kareva ◽  
Kimberly A. Luddy ◽  
Cliona O’Farrelly ◽  
Robert A. Gatenby ◽  
Joel S. Brown

Tumor-immune interactions are often framed as predator-prey. This imperfect analogy describes how immune cells (the predators) hunt and kill immunogenic tumor cells (the prey). It allows for evaluation of tumor cell populations that change over time during immunoediting and it also considers how the immune system changes in response to these alterations. However, two aspects of predator-prey type models are not typically observed in immuno-oncology. The first concerns the conversion of prey killed into predator biomass. In standard predator-prey models, the predator relies on the prey for nutrients, while in the tumor microenvironment the predator and prey compete for resources (e.g. glucose). The second concerns oscillatory dynamics. Standard predator-prey models can show a perpetual cycling in both prey and predator population sizes, while in oncology we see increases in tumor volume and decreases in infiltrating immune cell populations. Here we discuss the applicability of predator-prey models in the context of cancer immunology and evaluate possible causes for discrepancies. Key processes include “safety in numbers”, resource availability, time delays, interference competition, and immunoediting. Finally, we propose a way forward to reconcile differences between model predictions and empirical observations. The immune system is not just predator-prey. Like natural food webs, the immune-tumor community of cell types forms an immune-web of different and identifiable interactions.


2021 ◽  
Vol 17 (8) ◽  
pp. 20210316
Author(s):  
Luis F. Camacho ◽  
Leticia Avilés

Animals may develop mutualistic associations with other species, whereby prey offer resources or services in exchange for protection from predators. Alternatively, prey may offer resources or services directly to their would-be predators in exchange for their lives. The latter may be the case of hemipterans that engage in mutualistic interactions with ants by offering a honeydew reward. We test the extent to which a honeydew offering versus partner recognition may play a role as proximate mechanisms deterring ants from predating upon their hemipteran partners. We showed that, when presented with a choice between a hemipteran partner and an alternative prey type, mutualist ants were less likely to attack and more likely to remain probing their hemipteran partners. This occurred even in the absence of an immediate sugary reward, suggesting either an evolved or learned partner recognition response. To a similar extent, however, ants were also less likely to attack the alternative prey type when laced with honey as a proxy for a honeydew reward. This was the case even after the honey had been depleted, suggesting an ability of ants to recognize new potential sources of sugars. Either possibility suggests a degree of innate or learned partner recognition.


2021 ◽  
Vol 20 (1) ◽  
pp. 75-88
Author(s):  
José Luis Barragán-Ramírez ◽  
Benjamín Hernández ◽  
María Guadalupe Velarde-Aguilar ◽  
Oscar Pérez-Flores ◽  
José Luis Navarrete-Heredia ◽  
...  

The Big-footed Leopard Frog (Lithobates megapoda) is a threatened and endemic species from western Mexico. This species has aquatic habits and it is distinguished by its large size, particularly by the length of its legs, reason for which it is captured for human consumption. Also, knowledge about its natural history is scarce and incomplete. In this study, we analyzed the composition of the diet of L. megapoda on the shore of Lake Chapala, the largest lake in Mexico. A total of 69 adult individuals were collected lifeless in fishing nets, during the rainy season (June-October), of which 48 had stomach contents. A total of 96 prey items were identified, which correspond to 13 prey categories. Fish constituted the most dominant prey category in the diet in terms of number, volume, frequency of occurrence, and relative importance. No significant differences were found in the consumption by prey type (aquatic or terrestrial). However, the aquatic preys had a greater relative importance and were more voluminous than the terrestrial ones. The diversity of prey categories, in terms of prey volume, indicates males may have a higher dietary diversity than females, but we not evaluated possible bias. In addition, a significant effect was found in the interaction of size (SVL) of frogs with the average of prey volume. Females (that are larger than males) consumed prey within a wide volume range and, the larger they are, more voluminous are prey. In this way it is possible that intraspecific competition for trophic resources in the environment is reduced. This study helps us understand the trophic ecology of L. megapoda, a frog species that plays an important role in the food web where it lives, as a predator feeding on aquatic and terrestrial organisms.


Sign in / Sign up

Export Citation Format

Share Document