A management framework for preventing the secondary spread of aquatic invasive species

2008 ◽  
Vol 65 (7) ◽  
pp. 1512-1522 ◽  
Author(s):  
M. Jake Vander Zanden ◽  
Julian D. Olden

Biological invasions continue to accelerate, and there is a need for closer integration between invasive species research and on-the-ground management. In many regions, aquatic invasive species have established isolated populations, but have not yet spread to many sites that provide suitable habitat. In the Laurentian Great Lakes region, several Great Lakes invaders such as zebra mussel ( Dreissena polymorpha ), rainbow smelt ( Osmerus mordax ), and spiny water flea ( Bythotrephes longimanus ) are currently undergoing secondary spread to the smaller inland lakes and streams. This paper describes recent advances in forecasting the secondary spread of aquatic invasive species and presents a framework for assessing vulnerability of inland waters based on explicit assessment of three distinct aspects of biological invasions: colonization, site suitability, and adverse impact. In many cases, only a fraction of lakes on the landscape are vulnerable to specific invasive species, highlighting the potential application of this type of research for improving invasive species management. Effective application to on-the-ground resource management will require that research aimed at assessing site vulnerability be translated into management tools.

2020 ◽  
Vol 11 (3) ◽  
pp. 607-632
Author(s):  
Andrew Tucker ◽  
Lindsay Chadderton ◽  
Gust Annis ◽  
Alisha Davidson ◽  
Joel Hoffman ◽  
...  

2021 ◽  
Author(s):  
Joseph Arambulo

The purpose of this study is to is to examine the secondary spread of Bythothephes longimanus, commonly known as spiny water flea, across inland lakes in Ontario, and potentially determine predictors for the its invasion. Data for 190 inland lakes across 84 quaternary watersheds in Ontario were included in the database. Global Moran's I was used to analyze the spatial autocorrelation of the variables, and McFadden's Rho-Squared was used to determine if a variable was a predictor of invasion. Three independent variables, out of 28, were found to be good predictors of invasion: (1) mean temperature of watersheds during summer (MNTMPWSSU), (2) mean precipitation for watersheds during spring (MNPCPWSSP), and (3) mean precipitation for watersheds during summer (MNPCPWSSU). Of the three, mean precipitation for watersheds during summer was determined to be the best predictor.


2016 ◽  
Vol 42 (3) ◽  
pp. 703-707 ◽  
Author(s):  
Nancy A. Connelly ◽  
T. Bruce Lauber ◽  
Richard C. Stedman ◽  
Barbara A. Knuth

2018 ◽  
Vol 96 (7) ◽  
pp. 739-747 ◽  
Author(s):  
K.T. Sheppard ◽  
B.J. Hann ◽  
G.K. Davoren

The second largest inland walleye (Sander vitreus (Mitchill, 1818)) and sauger (Sander canadensis (Griffith and Smith, 1834)) fishery in Canada is found in Lake Winnipeg, Manitoba. To manage the fishery for a sustainable future, the growth and condition of these fish must be understood. Objectives were to (1) examine baseline growth and condition of walleye and sauger in Lake Winnipeg, (2) evaluate variation between the North and South basins, and (3) contribute observational findings on the distribution of dwarf walleye. Gill nets were set to catch walleye, sauger, and dwarf walleye throughout both basins at various locations and in all seasons during 2010 and 2011. North Basin walleye and sauger had higher growth rates and condition relative to the South Basin. This may be due to differential exploitation rates or diets such as the consumption of invasive rainbow smelt (Osmerus mordax (Mitchell, 1814)) in the North Basin and not in the South Basin. Dwarf walleye were observed more frequently in the South Basin than in the North Basin. Overall, this study provides important baseline data on the growth and condition of walleye and sauger populations prior to invasion of the spiny waterflea (Bythotrephes longimanus Leydig, 1860) and zebra mussels (Dreissena polymorpha (Pallas, 1771)).


2021 ◽  
Author(s):  
Richard Ross Shaker ◽  
Artur D. Yakubov ◽  
Stephanie M. Nick ◽  
Erin Vennie-Vollrath ◽  
Timothy J. Ehlinger ◽  
...  

Invasive species continue to pose major challenges for managing coupled human-environmental systems. Predictive tools are essential to maximize invasion monitoring and conservation efforts in regions reliant on abundant freshwater resources to sustain economic welfare, social equity, and ecological services. Past studies have revealed biotic and abiotic heterogeneity, along with human activity, can account for much of the spatial variability of aquatic invaders; however, improvements remain. This study was created to (1) examine the distribution of aquatic invasive species richness (AISR) across 126 lakes in the Adirondack Region of New York; (2) develop and compare global and local models between lake and landscape characteristics and AISR; and (3) use geographically weighted regression (GWR) to evaluate non-stationarity of local relationships, and assess its use for prioritizing lakes at risk to invasion. The evaluation index, AISR, was calculated by summing the following potential aquatic invaders for each lake: Asian Clam (Corbicula fluminea), Brittle Naiad (Najas minor), Curly-leaf Pondweed (Potamogeton crispus), Eurasian Watermilfoil (Myriophyllum spicatum), European Frog-bit (Hydrocharis morsus-ranae), Fanwort (Cabomba caroliniana), Spiny Waterflea (Bythotrephes longimanus), Variable-leaf Milfoil (Myriophyllum heterophyllum Water Chestnut (Trapa natans), Yellow Floating Heart (Nymphoides peltata), and Zebra Mussel (Dreissena polymorpha). The Getis-Ord Gi_ statistic displayed significant spatial hot and cold spots of AISR across Adirondack lakes. Spearman’s rank (q) correlation coefficient test (rs) revealed urban land cover composition, lake elevation, relative patch richness, and abundance of game fish were the strongest predictors of aquatic invasion. Five multiple regression global Poisson and GWR models were made, with GWR fitting AISR very well (R2 = 76–83%). Local pseudo-t-statistics of key explanatory variables were mapped and related to AISR, confirming the importance of GWR for understanding spatial relationships of invasion. The top 20 lakes at risk to future invasion were identified and ranked by summing the five GWR predictive estimates. The results inform that inexpensive and publicly accessible lake and landscape data, typically available from digital repositories within local environmental agencies, can be used to develop predictions of aquatic invasion with remarkable agreement. Ultimately, this transferable modeling approach can improve monitoring and management strategies for slowing the spread of invading species.


2021 ◽  
Author(s):  
Shrisha Mohit ◽  
Timothy B. Johnson ◽  
Shelley E. Arnott

Abstract Recreational boating activities enable aquatic invasive species (AIS) dispersal among disconnected lakes, as invertebrates and plants caught on or contained within watercraft and equipment used in invaded waterbodies can survive overland transport. Resource management agencies worldwide recommend decontaminating watercraft and equipment using high water pressure, rinsing with hot water, or air-drying for up to seven days to inhibit this mode of secondary spread. There is a lack of studies on the efficacy of these methods under realistic conditions and considering feasibility for recreational boaters. Hence, we conducted experiments addressing this knowledge gap using AIS present in Ontario, namely zebra mussels (Dreissena polymorpha), banded mystery snails (Viviparus georgianus), spiny waterfleas (Bythotrephes cederstroemi), Eurasian watermilfoil (Myriophyllum spicatum), Carolina fanwort (Cabomba caroliniana), and European frogbit (Hydrocharis morsus-ranae). Washing at high pressures of 900-1200 psi removed the most biological material (90%) from surfaces. Brief (<10s) exposure to water at ≥60°C caused nearly 100% mortality among all species tested, except snails. Acclimation to temperatures from 15°C to 30°C before hot water exposure had little effect on the minimum temperature required for no survival. Air-drying durations producing complete mortality were ≥60h for zebra mussels and spiny waterfleas, and ≥6 days among plants, whereas survival remained high among snails after a week of air-drying. Hot water exposure followed by air-drying was more effective than either method separately against all species tested, reducing either the minimum water temperature or air-drying duration necessary. These findings can inform best management strategies against AIS spread.


Author(s):  
Argyro Zenetos ◽  
Aphrodite Liami ◽  
Nicholas J. Xentidis ◽  
Maria Corsini-Foka

Observations of citizen scientists have become an indispensable source in the collection of biodiversity data worldwide. In Greece, the findings of these citizen scientists, in collaboration with the Hellenic Network on Aquatic Invasive Species (ELNAIS), have resulted in compiling diverse information on marine alien species. Since 2004, the Liamis Dive Centre has recorded visual data on 12 marine alien species around Pserimos Island (Dodekanisa, Greece), thus enabling us to sequence their progression and displacement amongst other vital information. The real number of biological invasions is likely to be higher than reported here because citizen scientists do not have the scientific skills required for species identification and also due to financial constraints. Nevertheless, the high number of observers to a certain extent compensates the lack of taxonomic expertise.


Sign in / Sign up

Export Citation Format

Share Document