The role of dispersal and retention in the early life stages of shrimp in a lowland river

2010 ◽  
Vol 67 (4) ◽  
pp. 720-729 ◽  
Author(s):  
Amina E. Price ◽  
Paul Humphries

This study investigated the importance of dispersal and retention processes during early ontogeny for three caridean shrimp species that complete their entire life history in freshwater. Directional traps were used to examine the small-scale movement patterns of shrimp into and out of nursery habitat patches (slackwaters) in a small lowland river in southeastern Australia. Movement patterns provided evidence for two contrasting life history based dispersal and retention strategies. For the two smaller atyid species, Paratya australiensis and Caridina mccullochi , the majority of larvae remained within the slackwater in which they were hatched until the final stage of development, at which point dispersal, either among slackwaters or out of slackwaters to faster-flowing pool and run habitats, occurred. For the larger palaemonid species, Macrobrachium australiense , larvae were hatched into slackwaters and dispersal occurred predominately during the first stage of larval development and then decreased as development progressed. Despite the differences in dispersal strategies among species, movement was mostly associated with a particular larval stage and thus emphasizes the importance of retention during critical developmental periods and of the potential impact that flow alteration could have on these and other species with similar life histories.


Author(s):  
Maren N. Vitousek ◽  
Laura A. Schoenle

Hormones mediate the expression of life history traits—phenotypic traits that contribute to lifetime fitness (i.e., reproductive timing, growth rate, number and size of offspring). The endocrine system shapes phenotype by organizing tissues during developmental periods and by activating changes in behavior, physiology, and morphology in response to varying physical and social environments. Because hormones can simultaneously regulate many traits (hormonal pleiotropy), they are important mediators of life history trade-offs among growth, reproduction, and survival. This chapter reviews the role of hormones in shaping life histories with an emphasis on developmental plasticity and reversible flexibility in endocrine and life history traits. It also discusses the advantages of studying hormone–behavior interactions from an evolutionary perspective. Recent research in evolutionary endocrinology has provided insight into the heritability of endocrine traits, how selection on hormone systems may influence the evolution of life histories, and the role of hormonal pleiotropy in driving or constraining evolution.



Author(s):  
Ken H. Andersen

This chapter develops descriptions of how individuals grow and reproduce. More specifically, the chapter seeks to determine the growth and reproduction rates from the consumption rate, by developing an energy budget of the individual as a function of size. To that end, the chapter addresses the question of how an individual makes use of the energy acquired from consumption. It sets up the energy budgets of individuals by formulating the growth model using so-called life-history invariants, which are parameters that do not vary systematically between species. While the formulation of the growth model in terms of life-history invariants is largely successful, there is in particular one parameter that is not invariant between life histories: the asymptotic size (maximum size) of individuals in the population. This parameter plays the role of a master trait that characterizes most of the variation between life histories.



2016 ◽  
Vol 12 (3) ◽  
pp. 20160069 ◽  
Author(s):  
Adam M. Fudickar ◽  
Mark P. Peterson ◽  
Timothy J. Greives ◽  
Jonathan W. Atwell ◽  
Eli S. Bridge ◽  
...  

In an era of climate change, understanding the genetic and physiological mechanisms underlying flexibility in phenology and life history has gained greater importance. These mechanisms can be elucidated by comparing closely related populations that differ in key behavioural and physiological traits such as migration and timing of reproduction. We compared gene expression in two recently diverged dark-eyed Junco (  Junco hyemalis ) subspecies that live in seasonal sympatry during winter and early spring, but that differ in behaviour and physiology, despite exposure to identical environmental cues. We identified 547 genes differentially expressed in blood and pectoral muscle. Genes involved in lipid transport and metabolism were highly expressed in migrant juncos, while genes involved in reproductive processes were highly expressed in resident breeders. Seasonal differences in gene expression in closely related populations residing in the same environment provide significant insights into mechanisms underlying variation in phenology and life history, and have potential implications for the role of seasonal timing differences in gene flow and reproductive isolation.



The Condor ◽  
2000 ◽  
Vol 102 (1) ◽  
pp. 52-59 ◽  
Author(s):  
David W. Winkler

Abstract In recent years, two approaches have emerged for the analysis of character evolution: the largely statistical “convergence” approach and the mainly cladistic “homology” approach. I discuss the strengths and weaknesses of these approaches as they apply to phylogenetic analyses of life-history variation in birds. Using examples from analyses of character variation in swallows, I suggest that the phylogenetic approach yields distinctive insights into the selective role of the environment and other characters of the organism on the evolution of life-history traits. This view thus has the potential of bringing together micro- and macro-evolutionary views of life-history evolution.



2021 ◽  
Vol 9 ◽  
Author(s):  
Anna B. Vassilieva ◽  
Sergei V. Smirnov

The biphasic life history of amphibians includes metamorphosis, a complex developmental event that involves drastic changes in the morphology, physiology and biochemistry accompanying the transition from the larval to adult stage of development. Thyroid hormones (THs) are widely known to orchestrate this remodeling and, in particular, to mediate the development of the bony skeleton, which is a model system in evolutionary morphological studies of amphibians. Detailed experimental studies of the role of THs in the craniogenesis of diverse urodelan amphibians revealed that (i) these hormones affect both the timing and sequence of bone formation, (ii) TH involvement increases in parallel with the increase in divergence between larval and adult skull morphology, and (iii) among urodelans, TH-involvement in skull development changes from a minimum in basal salamanders (Hynobiidae) to the most pronounced in derived ones (Salamandridae and Plethodontidae). Given the increasing regulatory function of THs in urodelan evolution, we hypothesized a stronger involvement of THs in the control of skeletogenesis in anurans with their most complex and dramatic metamorphosis among all amphibians. Our experimental study of skeletal development in the hypo- and hyperthyroid yellow-bellied toad (Bombina variegata: Bombinatoridae) supports the greater involvement of THs in the mediation of all stages of anuran cranial and postcranial bones formation. Similar to urodelans, B. variegata displays enhancing TH involvement in the development of cranial bones that arise during larval ontogeny: while the hormonal impact on early larval ossifications is minimal, the skull bones forming during metamorphosis are strictly TH-inducible. However, in contrast to urodelans, all cranial bones, including the earliest to form, are TH-dependent in B. variegata; moreover, the development of all elements of the axial and limb skeleton is affected by THs. The more accentuated hormonal control of skeletogenesis in B. variegata demonstrates the advanced regulatory and inductive function of THs in the orchestration of anuran metamorphosis. Based on these findings, we discuss (i) changes in THs function in amphibian evolution and (ii) the role of THs in the evolution of life histories in amphibians.



PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6151 ◽  
Author(s):  
Daniel Doherty-Weason ◽  
Fernanda X. Oyarzun ◽  
Luciano Vera ◽  
Miguel Bascur ◽  
Fabián Guzmán ◽  
...  

In marine invertebrates, the modes of development at early stages are related to the type and capacity of larval feeding to achieve growth. Therefore, studying the factors that determine larval feeding strategies can help to understand the diversity of life histories and evolution of marine invertebrates. The polychaete Boccardia wellingtonensis is a poecilogonous species that encapsulates and incubates its offspring. This species produces two types of larvae: (1) larvae that do not feed within the capsule and hatch as planktotrophic larvae (indirect development), and (2) adelphophagic larvae that feed on nurse eggs and other larvae inside the capsule to hatch as advanced larvae or juveniles (direct development). Otherwise, the larval types are indistinguishable at the same stage of development. The non-apparent morphological differences between both types of larvae suggest that other factors are influencing their feeding behavior. This work studied the potential role of the activity of 19 digestive enzymes on the different feeding capacities of planktotrophic and adelphophagic larvae of B. wellingtonensis. Also, differences in larval feeding structures and the larval capacity to feed from intracapsular fluid were evaluated by electron and fluorescence microscopy. Results showed that both types of larvae present similar feeding structures and had the capacity to ingest intracapsular fluid protein. Adelphophagic larvae showed overall the highest activities of digestive enzymes. Significant differences between larval types were observed in nine enzymes related to the use of internal and external nutritional sources. Given that larval feeding is closely related to larval development in species with encapsulation, this work supports that the study of the digestive enzymatic machinery of larvae may contribute to understanding the evolution of developmental modes.



2019 ◽  
Vol 67 (7) ◽  
pp. 473
Author(s):  
Emma Henderson ◽  
Melika Missen ◽  
Jacinta Zalucki

Obligate pollination mutualisms have recently been recorded in the Glochidion genus with Epicephala moth associates (leaf-flower and leaf-flower moths). There is limited literature on Australian Glochidion species and their pollinators. Glochidion ferdinandi occurs predominantly across the east coast of Queensland, Australia and has an obligate pollination association with Epicephala colymbetella. Early descriptions of G. ferdinandi describe the encapsulation of the adult moth within the fruit. In the present study, observations and fruit dissections were recorded to analyse the role of symbionts within this mutualism, pollinator life history and the flowering phenology of the host. Our study confirmed this rare behaviour in which E. colymbetella pupated within G. ferdinandi fruit in which adult moths were retained until fruit dehiscence. Fruit dissections identified two other species alongside E. colymbetella, a seed consuming Spilomelinae moth and parasitoid Bracon wasp. Although both moth species were found to reduce the number of surviving ovules in the fruit, E. colymbetella also provided a pollination benefit to G. ferdinandi. Furthermore, the life histories of E. colymbetella and phenology of G. ferdinandi were observed to be highly synchronous, with larvae developing concurrently with ovules after flower fertilisation. Retention of the adult moth in fruit has only previously been recorded in one other Epicephala (lanceolaria).



Author(s):  
Jean-Louis Hemptinne ◽  
Emilie Lecompte ◽  
Arnaud Sentis ◽  
Anthony Dixon ◽  
Alexandra Magro

1. The balance between risk and benefit of exploiting resources drives life history evolution. Predators are naturally recognized as major drivers of the life history evolution of their prey. The concept of an evolutionary arms race posits that prey also influence the life history evolution of their predators. There is far more evidence on the role of predators than of prey. 2. The goal of this study was to investigate the role of prey in life history evolution of predators using ladybird beetle predators either of aphids or coccids. These particular organisms were chosen because literature shows that the pace of life of aphids is faster than that of coccids and this difference is reflected in the life histories of the ladybirds that specialize on feeding on aphids or coccids. 3. Thirty-four species of ladybird predators of aphids and eight of coccids belonging to five different tribes were collected and reared in the laboratory. The females were weighed as well as their eggs, and their reproductive investment calculated as the number of ovarioles multiplied by the average mass of an egg. Phylogenetic relatedness was controlled for in the statistical analyses. 4. Controlling for female mass revealed that ladybird predators of aphids lay bigger eggs and have a higher reproductive investment than ladybird predators of coccids. These differences are not influenced by phylogenetic relatedness but only by the type of prey. We suggest that ladybird predators of coccids lay smaller eggs because neonate larvae do not have to search, catch and subdue prey, and that they have a smaller reproductive investment because they need to allocate more resources to locate prey. 5. Recognizing the influence of prey on the life history evolution of predators is important for understanding food web dynamics.



2016 ◽  
Vol 12 (6) ◽  
pp. 20160342 ◽  
Author(s):  
S. Kathleen Lyons ◽  
Joshua H. Miller ◽  
Danielle Fraser ◽  
Felisa A. Smith ◽  
Alison Boyer ◽  
...  

Understanding extinction drivers in a human-dominated world is necessary to preserve biodiversity. We provide an overview of Quaternary extinctions and compare mammalian extinction events on continents and islands after human arrival in system-specific prehistoric and historic contexts. We highlight the role of body size and life-history traits in these extinctions. We find a significant size-bias except for extinctions on small islands in historic times. Using phylogenetic regression and classification trees, we find that while life-history traits are poor predictors of historic extinctions, those associated with difficulty in responding quickly to perturbations, such as small litter size, are good predictors of prehistoric extinctions. Our results are consistent with the idea that prehistoric and historic extinctions form a single continuing event with the same likely primary driver, humans, but the diversity of impacts and affected faunas is much greater in historic extinctions.



2019 ◽  
Author(s):  
Lauren E Powell ◽  
Sally E Street ◽  
Robert A Barton

AbstractLife history is a robust correlate of relative brain size: large-brained mammals and birds have slower life histories and longer lifespans than smaller-brained species. One influential adaptive hypothesis to account for this finding is the Cognitive Buffer Hypothesis (CBH). The CBH proposes that large brains permit greater behavioural flexibility and thereby buffer the animal from unpredictable environmental challenges, allowing reduced mortality and increased lifespan. In contrast, the Developmental Costs Hypothesis (DCH) suggests that life-history correlates of brain size reflect the extension of maturational processes needed to accommodate the evolution of large brains. The hypotheses are not mutually exclusive but do make different predictions. Here we test novel predictions of the hypotheses in primates: examining how the volume of brain components with different developmental trajectories correlate with relevant phases of maternal investment, juvenile period and post-maturational lifespan. Consistent with the DCH, structures with different allocations of growth to pre-natal versus post-natal development exhibit predictably divergent correlations with the associated periods of maternal investment and pre-maturational lifespan. Contrary to the CBH, adult lifespan is uncorrelated with either whole brain size or the size of individual brain components once duration of maternal investment is accounted for. Our results substantiate and elaborate on the role of maternal investment and offspring development in brain evolution, suggest that brain components can evolve partly independently through modifications of distinct developmental mechanisms, and imply that postnatal maturational processes involving interaction with the environment may be particularly crucial for the development of cerebellar function. They also provide an explanation for why apes have relatively extended maturation times, which relate to the relative expansion of the cerebellum in this clade.



Sign in / Sign up

Export Citation Format

Share Document