Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnification of DDE, mirex, and PCB in a Lake Ontario pelagic food web

1995 ◽  
Vol 52 (12) ◽  
pp. 2660-2674 ◽  
Author(s):  
Richard M. Kiriluk ◽  
Mark R. Servos ◽  
D. Michael Whittle ◽  
Gilbert Cabana ◽  
Joseph B. Rasmussen

Stable isotopes of nitrogen (δ15N) and carbon (δ13C) were used to describe the trophic status and interactions of biota characteristic of a Lake Ontario pelagic food web. Stable isotopes of nitrogen were further used to characterize the relationship between an organism's trophic position and the biomagnification of specific hydrophobic contaminants through this food web. The δ15N defines the relative trophic status as (i) the top predator, lake trout (Saivelinus namaycush); (ii) prey species, alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), and slimy sculpin (Cottus cognatus); (iii) macroinvertebrates, mysids (Mysis relicta), and amphipods (Diporeia hoyi); (iv) net zooplankton, dominated by cyclopoids (Diacyclops thomasi) and cladocerans (Bosmina longirostris); and (v) net phytoplankton, dominated by diatoms (Melosira spp.). The separation of the four fish species, lake trout and associated prey items (alewife, rainbow smelt, and slimy sculpin), on the basis of their mean δ13C signatures complements what is known about the preferred diet of these fishes. The enrichment of 15N through this food web indicates that there is a strong correlation between the biomagnification of persistent lipophilic contaminants (p,p′-DDE, mirex, and PCB) and the relative trophic status of an organism as described by stable isotopes of nitrogen.

1998 ◽  
Vol 55 (2) ◽  
pp. 318-327 ◽  
Author(s):  
Peter S Rand ◽  
Donald J Stewart

Estimates of production and predation rates from bioenergetic models of chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), and lake trout (Salvelinus namaycush) suggest a long-term decline in their gross conversion efficiency (gross production/prey consumption) and the gross production to biomass ratio in Lake Ontario during 1978-1994. The former pattern was caused primarily by a declining trend in adult alewife (Alosa pseudoharengus) energy density during 1978-1985; the latter pattern resulted from reductions in growth rates (coho salmon) and a buildup of the older age-classes in the population (lake trout) over time. Model results suggest that over 100 and 25% of the annual production of adult alewife and rainbow smelt (Osmerus mordax), respectively, was consumed by salmonines during 1990 in Lake Ontario; hence, we claim that recent observations of reduced salmonine growth in Lake Ontario may be a result of prey limitation. Energy transfer from primary production to salmonines appeared to be more efficient in Lake Ontario than in Lake Michigan, probably due to higher stocking levels per unit area and higher densities of preferred prey fish in Lake Ontario. Through separate analyses, we arrived at conflicting conclusions concerning the sustainability of the food web configuration in Lake Ontario during 1990.


1998 ◽  
Vol 55 (2) ◽  
pp. 307-317 ◽  
Author(s):  
Peter S Rand ◽  
Donald J Stewart

We tested the hypotheses that (1) reductions in individual size and energy density of adult alewife (Alosa pseudoharengus) in Lake Ontario over the past decade have caused reductions in mean size of consumed alewife and compensatory increases in frequency of feeding by salmonines and (2) perceived recent reductions in the alewife and rainbow smelt (Osmerus mordax) prey base in recent years have resulted in shifts in diets of salmonines to less preferred prey items. Data from a diet survey conducted on sport-caught salmonines during 1983-1988 and 1993 indicated significant reductions in the mean size of consumed alewife across all predator species over time and an increased frequency of feeding among some predators (reflected by a decline in the proportion of empty stomachs observed). We found evidence of increased ration levels in coho salmon (Oncorhynchus kisutch) and lake trout (Salvelinus namaycush) and an increase in the number of adult alewife in stomachs of all predator species that was accurately predicted by an earlier bioenergetic model analysis. We found evidence of a shift in diet across years away from rainbow smelt and other fishes to adult alewife. Results point toward possible sources of bioenergetic stress on salmonines in Lake Ontario.


2000 ◽  
Vol 57 (7) ◽  
pp. 1395-1403 ◽  
Author(s):  
Chris J Harvey ◽  
James F Kitchell

We used stable isotope analysis to derive trophic relationships and movement patterns for components of the western Lake Superior food web. Trophic linkages implied by previous gut content studies were only marginally supported by stable isotope data. Siscowet lake trout (Salvelinus namaycush siscowet) were the top predators, and trophic overlap between siscowet and lean lake trout (Salvelinus namaycush) was low. Exotic Pacific salmon (Oncorhynchus spp.) occupied a lower trophic position than native piscivores because the latter relied more on coregonids. To evaluate spatial heterogeneity of the food web, we assumed that the adjacent cities of Duluth and Superior (DS) were a point source of 15N, and we measured isotopes of organisms close to and far from DS. Slimy sculpin (Cottus cognatus) were enriched in the DS area relative to other sites, implying that they are relatively sedentary. Rainbow smelt (Osmerus mordax) showed no differences at any sites, implying high vagility. Other organisms showed differences that could not be attributed to DS, implying that other mechanisms, such as trophic ontogeny, were influencing their isotopic signatures.


1987 ◽  
Vol 44 (S2) ◽  
pp. s37-s52 ◽  
Author(s):  
W. J. Christie ◽  
K. A. Scott ◽  
P. G. Sly ◽  
R. H. Strus

During the past 10 yr there have been dramatic increases in piscivorous populations of walleye (Stizostedion vitreum) in the Bay of Quinte and of planted lake trout (Salvelinus namaycush) and double-crested cormorants (Phalacrocorax auritus) in the Kingston basin of Lake Ontario. This paper documents changes in the prey stocks shared by these piscivores, including reduction in size and abundance of the slimy sculpin (Cottus cognatus) with subsequent stock equilibration and unabated reduction in the size and abundance of rainbow smelt (Osmerus mordax), both owing to predation pressure from the lake trout. The third primary prey species, alewife (Alosa pseudoharengus), has not yet suffered severely from the depredations of the piscivores. Symptoms of the effects are discernible, however, and the implications of a possible collapse are discussed. Lake trout survival and growth have not yet been affected by the changes in prey availability, but their diet has shifted both in response to their own expanded size composition and relative abundance of the three prey species. Increased utilization of alewife makes the hunting of the trout more pelagic. Problems of obtaining representative samples of the prey are discussed.


2003 ◽  
Vol 60 (12) ◽  
pp. 1552-1574 ◽  
Author(s):  
Charles R Bronte ◽  
Mark P Ebener ◽  
Donald R Schreiner ◽  
David S DeVault ◽  
Michael M Petzold ◽  
...  

Changes in Lake Superior's fish community are reviewed from 1970 to 2000. Lake trout (Salvelinus namaycush) and lake whitefish (Coregonus clupeaformis) stocks have increased substantially and may be approaching ancestral states. Lake herring (Coregonus artedi) have also recovered, but under sporadic recruitment. Contaminant levels have declined and are in equilibrium with inputs, but toxaphene levels are higher than in all other Great Lakes. Sea lamprey (Petromyzon marinus) control, harvest limits, and stocking fostered recoveries of lake trout and allowed establishment of small nonnative salmonine populations. Natural reproduction supports most salmonine populations, therefore further stocking is not required. Nonnative salmonines will likely remain minor components of the fish community. Forage biomass has shifted from exotic rainbow smelt (Osmerus mordax) to native species, and high predation may prevent their recovery. Introductions of exotics have increased and threaten the recovering fish community. Agencies have little influence on the abundance of forage fish or the major predator, siscowet lake trout, and must now focus on habitat protection and enhancement in nearshore areas and prevent additional species introductions to further restoration. Persistence of Lake Superior's native deepwater species is in contrast to other Great Lakes where restoration will be difficult in the absence of these ecologically important fishes.


1995 ◽  
Vol 52 (5) ◽  
pp. 925-935 ◽  
Author(s):  
Edward L. Mills ◽  
Connie Adams ◽  
Robert O'Gorman ◽  
Randall W. Owens ◽  
Edward F. Roseman

The objective of this study was to describe the diet of young-of-the-year and adult alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) in nearshore waters coincident with the colonization of Lake Ontario by Dreissena. Laboratory experiments and field observations indicated that alewife and rainbow smelt consumed dreissenid veligers and that the veligers remained intact and identifiable in the digestive tract for several hours. Dreissenid larvae were found in field-caught alewife and rainbow smelt in August 1992, even though veliger densities were low (<0.1/L). Zooplankton dominated the diet of all fish and veliger larvae were <0.1% of the biomass of prey eaten by these fish. Density of veligers and the distribution of settled dreissenids declined from west to east along the south shore of Lake Ontario. Based on veliger consumption rates we measured and the abundance of veligers and planktivores, we conclude that planktivory by alewife and smelt in the nearshore waters of Lake Ontario did not substantially reduce the number of veligers during 1991–1993. However, our results indicate that if the density of veligers in Lake Ontario decreases, and if planktivores remain abundant, planktivory on veliger populations could be significant.


2013 ◽  
Vol 32 (6) ◽  
pp. 1376-1381 ◽  
Author(s):  
Gregg T. Tomy ◽  
Ed Sverko ◽  
Vince Palace ◽  
Bruno Rosenberg ◽  
Robert McCrindle ◽  
...  

<em>Abstract</em>.—Thiamine concentrations in representative Great Lakes prey fish, including alewives <em>Alosa pseudoharengus</em>, rainbow smelt <em>Osmerus mordax</em>, slimy sculpin <em>Cottus cognatus</em>, bloater chub <em>Coregonus hoyi</em>, and lake herring <em>Coregonus artedi</em>, and their major dietary items, including mysids <em>Mysis relicta</em>, amphipods <em>Diporeia hoyi</em>, and net macroplankton, were measured to assess their potential involvement in depressed thiamine concentrations in lake trout <em>Salvelinus namaycush </em>of the Great Lakes. Mean thiamine concentrations in all biota were greater than the recommended dietary intake of 3.3 nmol/g for prevention of effects on growth, although the adequacy of these concentrations for reproduction is not known. Mean thiamine concentrations decreased in the order alewives > bloater chub, herring > smelt and differed from the order of associated egg thiamine concentrations published for lake trout feeding on these species (herring > alewives, smelt). As a result, these data strongly implicate the high thiaminase content, rather than the low thiamine content, of alewives and smelt as being responsible for the low egg thiamine concentrations of Great Lakes lake trout stocks that feed heavily on these species. Variations in thiamine content among prey species did not appear to be related to levels in their diet, because thiamine concentrations in <em>Mysis</em>, <em>Diporeia</em>, and macroplankton showed little consistency between group or between lake variation. There was no lake to lake variation in mean thiamine concentrations of prey species, but considerable within species variation occurred that was unrelated to size.


Sign in / Sign up

Export Citation Format

Share Document