A stable isotope evaluation of the structure and spatial heterogeneity of a Lake Superior food web

2000 ◽  
Vol 57 (7) ◽  
pp. 1395-1403 ◽  
Author(s):  
Chris J Harvey ◽  
James F Kitchell

We used stable isotope analysis to derive trophic relationships and movement patterns for components of the western Lake Superior food web. Trophic linkages implied by previous gut content studies were only marginally supported by stable isotope data. Siscowet lake trout (Salvelinus namaycush siscowet) were the top predators, and trophic overlap between siscowet and lean lake trout (Salvelinus namaycush) was low. Exotic Pacific salmon (Oncorhynchus spp.) occupied a lower trophic position than native piscivores because the latter relied more on coregonids. To evaluate spatial heterogeneity of the food web, we assumed that the adjacent cities of Duluth and Superior (DS) were a point source of 15N, and we measured isotopes of organisms close to and far from DS. Slimy sculpin (Cottus cognatus) were enriched in the DS area relative to other sites, implying that they are relatively sedentary. Rainbow smelt (Osmerus mordax) showed no differences at any sites, implying high vagility. Other organisms showed differences that could not be attributed to DS, implying that other mechanisms, such as trophic ontogeny, were influencing their isotopic signatures.

1998 ◽  
Vol 55 (5) ◽  
pp. 1273-1284 ◽  
Author(s):  
Doran M Mason ◽  
Timothy B Johnson ◽  
James F Kitchell

We used a size-structured model, indexed by age, that combines bioenergetics and foraging theory to evaluate the effects of prey fish community structure (species dominance, size structure, and density) on the diet and net foraging efficiency of lake trout (Salvelinus namaycush) in Lake Superior. Prey size structure was important for young lake trout but decreased in importance for older lake trout, especially with increasing prey density. The model predicted that rainbow smelt (Osmerus mordax) should dominate the diet of young lake trout due to the size-dependent capture limitations of larger prey. In contrast, lake herring (Coregonus artedi) should dominate the diet of oldest lake trout owing to a higher net energy return than rainbow smelt. Model results are consistent with age-specific diet and size-at-age of lake trout during the last 40 years. Diets of intermediate-sized lake trout do not reflect the recent resurgence of lake herring populations. Absence of a dietary switch is probably due to higher capture probability for rainbow smelt. Lake trout growth and production will likely be highest with a mixed prey species assemblage of young rainbow smelt and older lake herring.


1995 ◽  
Vol 52 (12) ◽  
pp. 2660-2674 ◽  
Author(s):  
Richard M. Kiriluk ◽  
Mark R. Servos ◽  
D. Michael Whittle ◽  
Gilbert Cabana ◽  
Joseph B. Rasmussen

Stable isotopes of nitrogen (δ15N) and carbon (δ13C) were used to describe the trophic status and interactions of biota characteristic of a Lake Ontario pelagic food web. Stable isotopes of nitrogen were further used to characterize the relationship between an organism's trophic position and the biomagnification of specific hydrophobic contaminants through this food web. The δ15N defines the relative trophic status as (i) the top predator, lake trout (Saivelinus namaycush); (ii) prey species, alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), and slimy sculpin (Cottus cognatus); (iii) macroinvertebrates, mysids (Mysis relicta), and amphipods (Diporeia hoyi); (iv) net zooplankton, dominated by cyclopoids (Diacyclops thomasi) and cladocerans (Bosmina longirostris); and (v) net phytoplankton, dominated by diatoms (Melosira spp.). The separation of the four fish species, lake trout and associated prey items (alewife, rainbow smelt, and slimy sculpin), on the basis of their mean δ13C signatures complements what is known about the preferred diet of these fishes. The enrichment of 15N through this food web indicates that there is a strong correlation between the biomagnification of persistent lipophilic contaminants (p,p′-DDE, mirex, and PCB) and the relative trophic status of an organism as described by stable isotopes of nitrogen.


2009 ◽  
Vol 66 (12) ◽  
pp. 2118-2129 ◽  
Author(s):  
Stephanie N. Schmidt ◽  
M. Jake Vander Zanden ◽  
James F. Kitchell

Restoration and rehabilitation of native species in the Laurentian Great Lakes is a priority for fisheries management agencies. Restoration efforts are increasingly incorporating a perspective that considers species within a broader food web context. We used stable isotope analysis and museum-preserved specimens to describe and quantify 100 years of food web changes in the Lake Superior fish community. We validated stable isotope analysis of museum specimens by showing a positive correlation between isotope- and diet-based estimates of trophic position. While introductions have created a more trophically diverse food web than historically found in Lake Superior, two separate metrics revealed little community-wide change in the food web. Our species-specific analysis revealed trophic niche differences between shortjaw ( Coregonus zenithicus ) and shortnose ( Coregonus reighardi ) ciscoes, two species previously argued to be indistinguishable based on morphological characteristics. By providing a historical context, our findings show the ability of the Lake Superior food web to accommodate non-native species introductions over the last century while still supporting native species populations. This long-term information about food web structure can help guide management and restoration goals in Lake Superior. Furthermore, Lake Superior can serve as a basis for comparing food web changes in other, more highly altered Great Lakes.


1981 ◽  
Vol 38 (12) ◽  
pp. 1738-1746 ◽  
Author(s):  
Terrence R. Dehring ◽  
Anne F. Brown ◽  
Charles H. Daugherty ◽  
Stevan R. Phelps

Patterns of genetic variation among lake trout (Salvelinus namaycush) of eastern Lake Superior were examined using starch gel electrophoresis. We used 484 individuals sampled from three areas, representing three morphological types (leans, humpers, and siscowets). Of 50 loci examined, 44 were monomorphic in all groups sampled. Genetic variation occurs at six loci AAT-1,2, MDH-3,4, ME-1, and SOD-1. The average heterozygosity found (H = 0.015) is low relative to other salmonid species. A significant amount of heterogeneity exists among the 10 lake trout samples. These differences are due to variation within as well as between morphological types. The significance and management implications of these data are discussed.Key words: genetic variation, lake trout, Salvelinus namaycush, Lake Superior


2013 ◽  
Vol 32 (6) ◽  
pp. 1376-1381 ◽  
Author(s):  
Gregg T. Tomy ◽  
Ed Sverko ◽  
Vince Palace ◽  
Bruno Rosenberg ◽  
Robert McCrindle ◽  
...  

2018 ◽  
Vol 44 (5) ◽  
pp. 1117-1122 ◽  
Author(s):  
Nicholas E. Jones ◽  
Michael Parna ◽  
Sarah Parna ◽  
Steve Chong

2018 ◽  
Vol 37 (4) ◽  
pp. 747-759 ◽  
Author(s):  
Sean J. Landsman ◽  
Kurt M. Samways ◽  
Brian Hayden ◽  
Kyle M. Knysh ◽  
Michael R. van den Heuvel

1975 ◽  
Vol 14 (4) ◽  
pp. 480-488 ◽  
Author(s):  
Ronald Parejko ◽  
Raymond Johnston ◽  
Robert Keller

2009 ◽  
Vol 54 (5) ◽  
pp. 1028-1041 ◽  
Author(s):  
SOPHIE COAT ◽  
DOMINIQUE MONTI ◽  
CLAUDE BOUCHON ◽  
GILLES LEPOINT

2011 ◽  
Vol 140 (6) ◽  
pp. 1504-1520 ◽  
Author(s):  
Tyler D. Ahrenstorff ◽  
Thomas R. Hrabik ◽  
Jason D. Stockwell ◽  
Daniel L. Yule ◽  
Greg G. Sass

Sign in / Sign up

Export Citation Format

Share Document