Generation of SNP markers for short straw in oat (Avena sativa L.)

Genome ◽  
2006 ◽  
Vol 49 (3) ◽  
pp. 282-287 ◽  
Author(s):  
Pirjo Tanhuanpää ◽  
Ruslan Kalendar ◽  
Jaana Laurila ◽  
Alan H Schulman ◽  
Outi Manninen ◽  
...  

Short straw is a desired trait in oat germplasm (Avena sativa L.). Marker-assisted selection, a key tool for achieving this objective, is limited by the presence and number of available markers. Here, we have attempted to develop markers sufficiently linked to a gene specifying short straw so that marker-assisted selection could be applied. Bulked-segregant analysis was used to identify anonymous PCR-based markers associated with the dwarfing gene Dw6 in an F2 population from the cross between A. sativa 'Aslak' and A. sativa 'Kontant'. One random amplified polymorphic DNA (RAPD) and 1 retrotransposon-microsatellite amplified polymorphism (REMAP) marker were found to be associated with height. These were converted into codominant single-nucleotide polymorphism (SNP) markers. The SNP–REMAP and the SNP–RAPD markers were located 5.2 and 12.6 cM from Dw6, respectively. They can be used in future efforts both to enhance oat germplasm by application of molecular markers and to determine the nature of the gene through positional cloning.Key words: Avena sativa, short straw, marker-assisted selection, RAPD, REMAP, SNP.

2021 ◽  
Vol 19 (1) ◽  
pp. 20-28
Author(s):  
Abush Tesfaye Abebe ◽  
Adesike Oladoyin Kolawole ◽  
Nnanna Unachukwu ◽  
Godfree Chigeza ◽  
Hailu Tefera ◽  
...  

AbstractSoybean (Glycine max (L.) Merr.) is an important legume crop with high commercial value widely cultivated globally. Thus, the genetic characterization of the existing soybean germplasm will provide useful information for enhanced conservation, improvement and future utilization. This study aimed to assess the extent of genetic diversity of soybean elite breeding lines and varieties developed by the soybean breeding programme of the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. The genetic diversity of 65 soybean genotypes was studied using single-nucleotide polymorphism (SNP) markers. The result revealed that 2446 alleles were detected, and the indicators for allelic richness and diversity had good differentiating power in assessing the diversity of the genotypes. The three complementary approaches used in the study grouped the germplasm into three major clusters based on genetic relatedness. The analysis of molecular variance revealed that 71% (P < 0.001) variation was due to among individual genotypes, while 11% (P < 0.001) was ascribed to differences among the three clusters, and the fixation index (FST) was 0.11 for the SNP loci, signifying moderate genetic differentiation among the genotypes. The identified private alleles indicate that the soybean germplasm contains diverse variability that is yet to be exploited. The SNP markers revealed high diversity in the studied germplasm and found to be efficient for assessing genetic diversity in the crop. These results provide valuable information that might be utilized for assessing the genetic variability of soybean and other legume crops germplasm by breeding programmes.


Euphytica ◽  
2010 ◽  
Vol 175 (1) ◽  
pp. 91-107 ◽  
Author(s):  
Jin-kee Jung ◽  
Soung-Woo Park ◽  
Wing Yee Liu ◽  
Byoung-Cheorl Kang

2018 ◽  
Vol 11 (3-4) ◽  
pp. 93-106 ◽  
Author(s):  
Aliza A. Lindo ◽  
Dwight E. Robinson ◽  
Paula F. Tennant ◽  
Lyndel W. Meinhardt ◽  
Dapeng Zhang

2019 ◽  
Vol 70 (10) ◽  
pp. 827 ◽  
Author(s):  
H. B. Jiang ◽  
N. Wang ◽  
J. T. Jian ◽  
C. S. Wang ◽  
Y. Z. Xie

The yellow–green leaf mutant can be exploited in photosynthesis and plant development research. A Triticum aestivum mutant with the chlorina phenotype, here called B23, was produced by treatment with the chemical mutagen sodium azide. This B23 mutant showed significantly lower chlorophyll content than wild-type Saannong33, and its chloroplast structure was abnormal. All its yield-related traits, except for the number of spikes per plant, were also significantly decreased. Genetic analysis confirmed that the mutant phenotype was controlled by a recessive gene, here designated cn-A1. Using bulked segregant analysis and the wheat 660K single nucleotide polymorphism array, the cn-A1 gene was mapped to chromosome 7AL, and 11 polymorphic markers were developed. Further analysis showed that cn-A1 was located in a 1.1-cM genetic region flanked by Kompetitive allele specific PCR (KASP) markers 660K-7A12 and 660K-7A20, which corresponded to a physical interval of 3.48 Mb in T. aestivum cv. Chinese Spring chromosome 7AL containing 47 predicted genes with high confidence. These results are expected to accelerate the process of cloning the cn-A1 gene and facilitate understanding of the mechanisms underlying chlorophyll metabolism and chloroplast development in wheat.


2020 ◽  
Vol 56 (No. 2) ◽  
pp. 62-70 ◽  
Author(s):  
Shahril Ab Razak ◽  
Nor Helwa Ezzah Nor Azman ◽  
Rahiniza Kamaruzaman ◽  
Shamsul Amri Saidon ◽  
Muhammad Fairuz Mohd Yusof ◽  
...  

Understanding genetic diversity is a main key for crop improvement and genetic resource management. In this study, we aim to evaluate the genetic diversity of the released Malaysian rice varieties using single nucleotide polymorphism (SNP) markers. A total of 46 released Malaysian rice varieties were genotyped using 1536 SNP markers to evaluate their diversity. Out of 1536 SNPs, only 932 SNPs (60.7%) represented high quality alleles, whereas the remainder either failed to amplify or had low call rates across the samples. Analysis of the 932 SNPs revealed that a total of 16 SNPs were monomorphic. The analysis of the SNPs per chromosome revealed that the average of the polymorphic information content (PIC) value ranged from 0.173 for chromosome 12 to 0.259 for chromosome 11, with an average of 0.213 per locus. The genetic analysis of the 46 released Malaysian rice varieties using an unweighted pair group method with arithmetic mean (UPGMA) dendrogram revealed the presence of two major groups. The analysis was supported by the findings from the STRUCTURE analysis which indicated the ∆K value to be at the highest peak at K = 2, followed by K = 4. The pairwise genetic distance of the shared alleles showed that the value ranged from 0.000 (MR159–MR167) to 0.723 (MRIA–Setanjung), which suggested that MR159 and MR167 were identical, and that the highest dissimilarity was detected between MRIA 1 and Setanjung. The results of the study will be very useful for the variety identification, the proper management and conservation of the genetic resources, and the exploitation and utilisation in future breeding programmes.


Sign in / Sign up

Export Citation Format

Share Document