scholarly journals Genome size variation in the Artemisia arborescens complex (Asteraceae, Anthemideae) and its cultivars

Genome ◽  
2006 ◽  
Vol 49 (3) ◽  
pp. 244-253 ◽  
Author(s):  
Sònia Garcia ◽  
Teresa Garnatje ◽  
John D Twibell ◽  
Joan Vallès

Different wild Mediterranean populations of Artemisia arborescens from diverse locations representing its geographical distribution, as well as some of its well-known cultivars and some specimens cultivated as ornamentals in gardens, streets, roads and nurseries, were analysed for genome size. Other closely related species endemic to Macaronesia, Artemisia canariensis, Artemisia argentea, and Artemisia gorgonum, were also analysed, and their nuclear DNA amount has been related to the biogeography of this group of species. Additionally, 5 populations of the closely related Artemisia absinthium were analysed to establish comparisons. Measurements acquired by flow cytometry ranged from 8.29 to 11.61 pg for 2C values. Statistically significant differences of 2C nuclear DNA amounts with respect to factors such as insularity or domestication have been detected. However, quite a low intraspecific genome size variation has been found in these species. Furthermore, the study also addressed the possible hybrid origins and possible misidentifications of some of the supposed cultivars of A. arborescens.Key words: Artemisia arborescens, Artemisia absinthium, Artemisia argentea, Artemisia canariensis, Artemisia gorgonum, C value, Compositae, cultivar, domestication, flow cytometry, genome size, hybridization, interspecific variation, intraspecific variation, speciation.

2015 ◽  
Vol 57 (1) ◽  
pp. 104-113
Author(s):  
Sandra Cichorz ◽  
Maria Gośka ◽  
Monika Rewers

AbstractSinceM. sinensisAnderss.,M. sacchariflorus(Maxim.) Hack. andM. ×giganteusJ.M.Greef & Deuter ex Hodk. and Renvoize have considerably the highest potential for biomass production amongMiscanthusAnderss. species, there is an urgent need to broaden the knowledge about cytological characteristics required for their improvement. In this study our objectives were to assess the genome size variation among eighteenMiscanthusaccessions, as well as estimation of the monoploid genome size (2C and Cx) of theM. sinensiscultivars, which have not been analyzed yet. The characterization of threeMiscanthusspecies was performed with the use of flow cytometry and analysis of the stomatal length. The triploid (2n = 3x = 57)M. sinensis‘Goliath’ andM. ×giganteusclones possessed the highest 2C DNA content (8.34 pg and 7.43 pg, respectively). The intermediate 2C-values were found in the nuclei of the diploid (2n = 2x = 38)M. sinensisaccessions (5.52–5.72 pg), whereas they were the lowest in the diploid (2n = 2x = 38)M. sacchariflorusecotypes (4.58–4.59 pg). The presented study revealed interspecific variation of nuclear DNA content (P<0.01) and therefore allowed for recognition of particular taxa, inter- and intraspecific hybrids and prediction of potential parental components. Moreover, intraspecific genome size variation (P<0.01) was observed inM. sinensiscultivars at 3.62%. The values of the stomatal size obtained for the triploidM. ×giganteus‘Great Britain’ (mean 30.70 μm) or ‘Canada’ (mean 29.67 μm) and diploidM. sinensis‘Graziella’ (mean 29.96 μm) did not differ significantly, therefore this parameter is not recommended for ploidy estimation.


Genome ◽  
1996 ◽  
Vol 39 (4) ◽  
pp. 730-735 ◽  
Author(s):  
Juha Kankanpää ◽  
Alan H. Schulman ◽  
Leena Mannonen

Hordeum, distributed worldwide in temperate zones, is the second largest genus in the tribe Triticeae and includes diploid, tetraploid, and hexaploid species. We determined, by DAPI staining and flow cytometry, the nuclear DNA content for 35 accessions of the genus Hordeum, from a total of 19 species, including specimens of 2 cultivars and 2 landraces of Hordeum vulgare ssp. vulgare as well as samples of 12 Hordeum vulgare ssp. spontaneum populations. Genome sizes ranged from 5.69 to 9.41 pg for the G1 nuclei of the diploids, and from 13.13 to 18.36 pg for those of the tetraploids. This constitutes a 1.7-fold variation for the diploids, contrasting with a 4% variation previously reported. For H. vulgare ssp. vulgare (barley), the accessions examined differed by 18%. These variations in genome size cannot be correlated with meiotic pairing groups (I, H, X, Y) or with proposed phylogenetic relationships within the genus. Genome size variation between barley accessions cannot be related to status as cultivated or wild, or to climatic or geological gradients. We suggest these data may indicate rapid but sporadic changes in genome size within the genus. Key words : barley, Hordeum, Triticeae, genome size, flow cytometry.


Genome ◽  
2004 ◽  
Vol 47 (2) ◽  
pp. 246-256 ◽  
Author(s):  
Elzbieta Kuta ◽  
Borut Bohanec ◽  
Ewa Dubas ◽  
Liliana Vizintin ◽  
Leslaw Przywara

Chromosomes and nuclear DNA amount were analyzed in leaf tissues of Luzula nivea, Luzula luzuloides, and Luzula multiflora. Intra- and interspecific karyological variability was stated. Chromosome numbers in diploids ranged 2n = 8-24 in L. nivea and L. luzuloides and 2n = 12-84 in hexaploid L. multiflora. Karyological variability resulted mainly from chromosome fission (agmatoploidy) and aneusomaty; chromosome fusion (symploidy) and polyploidy were also involved. Flow cytometric determination of nuclear genome size using propidium iodide staining gave values of 1.584 pg in L. luzuloides, 1.566 pg in L. nivea, and 3.034 pg in L. multiflora. Variability in relative nuclear genome size within species was measured by 4',6-diamidino-2-phenylindole staining. In contrast with previous reports, variability was fairly small and ranged from 1.796 to 1.864 pg in L. luzuloides, from 1.783 to 1.847 pg and from 1.737 to 1.808 pg in two populations (S and F) of L. nivea, respectively, and from 3.125 to 3.271 pg in L. multiflora. An intraplant (interleaf) genome size variation was also observed and its possible causes are discussed.Key words: Luzula, holokinetic chromosomes, agmatoploidy, symploidy, polyploidy, nuclear DNA amount, intraplant genome size variability, flow cytometry.


2001 ◽  
Vol 22 (4) ◽  
pp. 387-396 ◽  
Author(s):  
◽  
◽  
◽  

AbstractThe amount of nuclear DNA in 173 specimens of Pelobates f. fuscus from 34 localities in Russia, Ukraine, Moldavia and Latvia was determined by DNA flow cytometry. Two distinct groups with different genome sizes were identified. The ranges of the genome size variation in the two groups did not overlap. Geographically, these groups with smaller or larger genome size are distributed in the west and in the east of eastern Europe, respectively.


2020 ◽  
Vol 15 ◽  
Author(s):  
Liaofu Luo ◽  
Lirong Zhang

Aims: The discontinuous pattern of genome size variation in angiosperms is an unsolved problem related to genome evolution. We introduce a genome evolution operator and solve the related eigen-value equation to deduce the discontinuous pattern. Background: Genome is a well-defined system for studying evolution of species. One of the basic problems is the genome size evolution. The DNA amounts for angiosperm species are highly variable differing over 1000-fold. One big surprise is the discovery of the discontinuous distribution of nuclear DNA amounts in many angiosperm genera. Objective: The discontinuous distribution of nuclear DNA amounts have certain regularity much like a group of quantum states in atomic physics. The quantum pattern has not been explained by all the evolutionary theories so far and we shall interpret it through the quantum simulation of genome evolution. Methods: We have introduced a genome evolution operator H to deduce the distribution of DNA amount. The nuclear DNA amount in angiosperms is studied from the eigen-value equation of the genome evolution operator H. The operator H is introduced by physical simulation and it is defined as a function of the genome size N and the derivative with respective to the size. Results: The discontinuity of DNA size distribution and its synergetic occurrence in related angiosperms species are successfully deduced from the solution of the equation. The results agree well with the existing experimental data of Aloe, Clarkia, Nicotiana, Lathyrus, Allium and other genera. Conclusion: The success of our approach may infer the existence of a set of genomic evolutionary equations satisfying classical – quantum duality. The classical phase of evolution means it obeying classical deterministic law, while the quantum phase means it obeying quantum stochastic law. The discontinuity of DNA size distribution provides fresh evidence on the quantum evolution of angiosperms. People realize that the discontinuous pattern is due to the existence of some unknown evolutionary constrains. However, our study indicates that these constrains on angiosperm genome are essentially of quantum origin.


Genome ◽  
2004 ◽  
Vol 47 (6) ◽  
pp. 1004-1014 ◽  
Author(s):  
Sònia Garcia ◽  
María Sanz ◽  
Teresa Garnatje ◽  
Agnieszka Kreitschitz ◽  
E Durant McArthur ◽  
...  

Genome size has been estimated by flow cytometry in 47 populations of 40 species of the tribe Anthemideae (Asteraceae), mainly from Artemisia and other genera of the subtribe Artemisiinae and related taxa. A range of 2C values from 3.54 to 21.22 pg was found. DNA amount per basic chromosome set ranged from 1.77 to 7.70 pg. First genome size estimates are provided for one subtribe, 10 genera, 32 species, and two subspecies. Nuclear DNA amount correlated well with some karyological, physiological and environmental characters, and has been demonstrated as a useful tool in the interpretation of evolutionary relationships within Artemisia and its close relatives.Key words: Artemisia, C value, ecology, evolution, flow cytometry, genome size, nuclear DNA amount variation, phylogeny, polyploidy, systematics.


1996 ◽  
Vol 126 (3) ◽  
pp. 489-497 ◽  
Author(s):  
A. M. Rodr�guez-Ju�z ◽  
M. Torrado ◽  
J. M�ndez

2002 ◽  
Vol 50 (6) ◽  
pp. 735-749 ◽  
Author(s):  
David C. Hardie ◽  
T. Ryan Gregory ◽  
Paul D.N. Hebert

The study of genome size variation is important from a number of practical and theoretical perspectives. For example, the long-standing “C-value enigma” relating to the more than 200,000-fold range in eukaryotic genome sizes is best studied from a broad comparative standpoint. Genome size data are also required in detailed analyses of genome structure and evolution. The choice of future genome sequencing projects will be dependent on knowledge regarding the sizes of genomes to be sequenced, and so on. To date, genome size data have been acquired primarily by Feulgen microdensitometry or flow cytometry. Each has several advantages but also important limitations. In this review, we provide a practical guide to the new technique of Feulgen image analysis densitometry. The review is designed for those interested in genome size measurements but not extensively experienced in histochemistry, densitometry, or microscopy. Therefore, relevant historical and technical background information is included. For easy reference, we provide recipes for required reagents, guidelines for cell staining, and a checklist of steps for successful image analysis. We hope that the accuracy, rapidity, and cost-effectiveness of Feulgen image analysis demonstrated here will stimulate further surveys of genome sizes in a variety of taxa.


2021 ◽  
Vol 15 (2) ◽  
pp. 137-148
Author(s):  
Jiabao Li ◽  
Kailin Zhu ◽  
Qin Wang ◽  
Xin Chen

Eight taxa of Sorbus Linnaeus, 1753 sensu stricto (Rosaceae) from China have been studied karyologically through chromosome counting, chromosomal measurement and karyotype symmetry. Genome size was also estimated by flow cytometry. Six taxa, S. amabilis Cheng ex T.T.Yu et K.C.Kuan, 1963, S. hupehensis var. paucijuga (D.K. Zang et P.C. Huang, 1992) L.T. Lu, 2000, S. koehneana C.K. Schneider, 1906, S. pohuashanensis (Hance, 1875) Hedlund, 1901, S. scalaris Koehne, 1913 and S. wilsoniana C.K. Schneider, 1906 are diploids with 2n = 34, whereas two taxa, S. filipes Handel-Mazzetti,1933 and S. ovalis McAllister, 2005 are tetraploid with 2n = 68. In general, the chromosome size is mainly small, and karyotypes are symmetrical with predominance of metacentric chromosomes. Genome size variation of diploids and tetraploids is 1.401 pg –1.676 pg and 2.674 pg –2.684 pg, respectively. Chromosome numbers of S. amabilis and S. hupehensis var. paucijuga, and karyotype and genome size of eight taxa studied are reported for the first time. This study emphasised the reliability of flow cytometry in genome size determination to infer ploidy levels in Chinese native Sorbus species.


Sign in / Sign up

Export Citation Format

Share Document