dapi staining
Recently Published Documents


TOTAL DOCUMENTS

341
(FIVE YEARS 137)

H-INDEX

29
(FIVE YEARS 6)

2022 ◽  
Vol 15 (1) ◽  
pp. 9-14
Author(s):  
Jing-Xiang Zhong ◽  
◽  
Kang-Sheng Wu ◽  
Guo-Cheng Yu ◽  
Lei-Lei Tu ◽  
...  

AIM: To investigate the effect of nano-selenium loaded with different concentrations of lycium barbarum polysaccharide (LBP-SeNPs) on the proliferation of human lens epithelial cells (HLECs) from UV irradiation. METHODS: LBP-SeNPs were prepared and their particle size was detected. HLECs (SRA01/04) were irradiated with UVB for different time (0, 10, 20, 30, 40, 50, 60min) to construct a damaged model, the survival rate of cells was determined by methylthiazol tetrazolium (MTT) assay. The 4',6-Diamidine-2'-phenylindole dihydrochloride (DAPI) staining was used to observe the status of cell nucleus and drug entering cytoplasm through cell membrane in SRA01/04 cells after adding LBP-SENPS loaded with coumarin fluorescence agent 24h under fluorescence microscope. SRA01/04 normal and UVB-damaged cells were treated with different amounts of LBP-SeNPs at different concentrations, cells proliferation were observed. RESULTS: The particle size of LBP-SeNPs was stable in the range of 150-200 nm. The survival rate changes with time after UVB irradiation were statistically significant. The 10min of UVB exposure as the time was chosen to construct the cell damage model. With DAPI staining, LBP-SeNPs were observed to enter the cytoplasm through the cell membrane under fluorescence inverted microscope. Cytotoxicity of SRA01/04 at different concentrations of LBP-SeNPs were measured. Cell survival rate was statistically different compared with the control group. The higher the loading concentration of LBP in nano-Se drugs was, the higher the cell proliferation rate was (P<0.05). The lower the concentration of LBP-SeNPs, the higher the cell proliferation rate, showing a negative growth trend (P<0.05). The group with the highest average cell proliferation rate was 0.5 µmol/L 2.0 mg/mL LBP-SeNPs (128.80%). When the 2.0 mg/mL LBP-SeNPs group was selected for cell photography, the cell density was higher at 0.5 μmol/L. With the increase of concentration, SRA01/04 cells appeared more cytoplasm dehydration, cell shrinkage and apoptotic bodies, and cell density decreased. CONCLUSION: LBP-SeNPs has moderate particle size and good stability. LBP-SeNPs can protect HLECs (SRA01/04) from UVB-induced damage, and the cell proliferation rate is further increased with increasing the amount of loaded LBP and decreasing nano-selenium concentration.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 358
Author(s):  
Reem Al Monla ◽  
Zeina Dassouki ◽  
Nouha Sari-Chmayssem ◽  
Hiba Mawlawi ◽  
Hala Gali-Muhtasib

Brown seaweeds are producers of bioactive molecules which are known to inhibit oncogenic growth. Here, we investigated the antioxidant, cytotoxic, and apoptotic effects of two polysaccharides from the brown algae Colpomenia sinuosa, namely fucoidan and alginate, in a panel of cancer cell lines and evaluated their effects when combined with vitamin C. Fucoidan and alginate were isolated from brown algae and characterized by HPLC, FTIR, and NMR spectroscopy. The results indicated that highly sulfated fucoidans had higher antioxidant and cytotoxic effects than alginate. Human colon cancer cells were the most sensitive to the algal treatments, with fucoidan having an IC50 value (618.9 µg/mL−1) lower than that of alginate (690 µg/mL−1). The production of reactive oxygen species was increased upon treatment of HCT-116 cells with fucoidan and alginate, which suggest that these compounds may trigger cell death via oxidative damage. The combination of fucoidan with vitamin C showed enhanced effects compared to treatment with fucoidan alone, as evidenced by the significant inhibitory effects on HCT-116 colon cancer cell viability. The combination of the algal polysaccharides with vitamin C caused enhanced degeneration in the nuclei of cells, as evidenced by DAPI staining and increased the subG1 population, suggesting the induction of cell death. Together, these results suggest that fucoidan and alginate from the brown algae C. sinuosa are promising anticancer compounds, particularly when used in combination with vitamin C.


Author(s):  
Fatemeh Safari ◽  
Narjes Rayat Azad ◽  
Ali Alizadeh Ezdiny ◽  
Safoora Pakizehkar ◽  
Zeinab Khazaei Koohpar ◽  
...  

Background: Prostate Cancer (PCa) is the major reason for the high mortality rates among men worldwide. In fact, current therapeutic approaches are not successful. It appears that discovering more effective methods considering several parameters such as availability, low cost, and no toxicity to normal cells is one of the biggest challenges for interested researchers. Green tea (extracted from the plant Camellia sinensis) with high level of polyphenolic compounds and as the most globally consumed beverage has attracted considerable interest. MicroRNAs (or miRNAs) were considered as novel tools in cancer therapy which modulate various biological events in cell by regulation of gene expression. The aim of the current study was to evaluate the antitumor activity of green tea in LNCaP cells through up-regulation of miR-181a expression. Methods: First, LNCaP cells were cultured and by using quantitative real time PCR (qRT-PCR) and western blot methods, the expression levels of Bax and BCL2 were analyzed. Next, a 3D cell culture model was applied to evaluate the expression of miRNA-181a in LNCaP cells.  Results: It was shown that green tea induced cellular apoptosis. The high number of apoptotic nuclei was also shown by using DAPI staining. The inhibition of tumor growth was revealed by analyzing the size and number of spheroids. Also, up-regulation of miR-181a expression in LNCaP cells was revealed after treatment with green tea. Conclusion: Our results are helpful to design antitumor regimens based on consumption of green tea through up-regulation of miRNA-181a expression and induction of apoptosis.  


2021 ◽  
Vol 12 (6) ◽  
pp. 8094-8104

A series of novel thiazolidinone-isatin hybrids have been synthesized through the Knoevenagel reaction of isatin derivatives with synthesized thiazolidinone scaffolds and then evaluated for their in vitro antibacterial effects on Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus). Cytotoxic effects of the compounds on non-small-cell lung cancer cells (A549 cells), breast epithelial cancer cell line (MCF-7), and prostate cancer cells (PC3 cells) were investigated. Among compounds tested for antibacterial activity, S. aureus was susceptible to compound 7d. The most potent compounds against A549, MCF-7, and PC3 tumor cells were found to be 7g. DAPI staining of all cancer cell lines treated with compound 7g, associated with cell death. We finally confirmed that apoptosis occurred in A549 cells by up-regulated Bax expression and down-regulated Bcl-2 expression from the mitochondrial pathway of apoptosis by using the quantitative reverse transcription-polymerase chain reaction (qRT-PCR) method. Our findings suggested that compound 7g may be a good target in designing cancer therapy strategies.


2021 ◽  
Author(s):  
Huma Bhatti ◽  
Rubina Rubina ◽  
Faisal Rashid ◽  
Sumera Zaib ◽  
Jamshed Iqbal ◽  
...  

In our current study, a series of reactions with isolated natural flavonoids (2-phenylchromen-4-one) and flavanone (2,3-dihydro-2-phenylchromen-4-one) through Mannich base was carried out by a one-pot three-component reaction. Their structure-activity relationship study (SAR) reveals the anticancer activity of natural compounds and their Mannich bases. The flavones were substituted by imine at position C-8, while in the flavanones, the reaction takes place at positions C-8 and C-3. Spectroscopic techniques characterized all the isolated and newly synthesized derivatives. Anticancer activity was checked on HeLa and MCF-7 (cancer cell lines) and BHK-21 (normal cell line). Using propidium iodide (PI) and DAPI staining as fluorescence microscopic imaging was confirmed the Apoptotic effect of potent compound. Further, it was evaluated by cell cycle analysis through flow-cytometry, reactive oxygen species and lactate dehydrogenase production. The caspase-9 and -3 activity were estimated by mitochondrial membrane potential. Derivative of naringenin, ((2S)-4′,5,7-Trihydroxyflavan-4-one) where reactions occur at position C-3 were active than others.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1544
Author(s):  
Dorota Tichaczek-Goska ◽  
Michał Gleńsk ◽  
Dorota Wojnicz

Antibiotic therapy and photodynamic therapy (PDT) are commonly used to treat bacterial infections. Unfortunately, these methods are often ineffective. Therefore, agents that could effectively support antibiotic therapy and PDT in the inactivation of pathogens are being sought. Phytotherapy seems to be a good solution. The aim of the current research was to examine whether Polypodium vulgare extract (PvE) would improve the effectiveness of PDT and ciprofloxacin (CIP), an antibiotic that is commonly used to treat urinary tract infections in humans. UHPLC-MS analysis was performed to establish the PvE content. Chlorin e6 has been used as a photosensitizer in the PDT method. Biofilm production was established using the spectrophotometric method. The live cell count in planktonic and biofilm consortia was determined with the microdilution method and DAPI staining. The decrease of the bacterial survival, biofilm mass synthesis, and morphological changes of the bacteria under the combined treatments: PDT+PvE and CIP+PvE was noted. The results clearly indicate that the PvE can be used as a good agent for improving the efficacy of both PDT and the CIP activity to inactivate uropathogenic Escherichia coli strains. The obtained results are of particular value in the era of widespread and still-increasing drug resistance among bacterial pathogens.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6990
Author(s):  
Hamid Saeed Shah ◽  
Usman Nasrullah ◽  
Sumera Zaib ◽  
Faisal Usman ◽  
Ajmal Khan ◽  
...  

The rapidly growing global burden of cancer poses a major challenge to public health and demands a robust approach to access promising anticancer therapeutics. In parallel, nanotechnology approaches with various pharmacological properties offer efficacious clinical outcomes. The use of new artificial variants of nanosponges (NS) as a transporter of chemotherapeutic drugs to target cells has emerged as a very promising tool. Therefore, in this research, ethylcellulose (EC) NS were prepared using the ultrasonication assisted-emulsion solvent evaporation technique. Withaferin-A (WFA), an active ingredient in Withania somnifera, has been implanted into the nanospongic framework with enhanced anticancer properties. Inside the polymeric structure, WFA was efficiently entrapped (85 ± 11%). The drug (WFA) was found to be stable within polymeric nanosponges, as demonstrated by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) studies. The WFA-NS had a diameter of 117 ± 4 nm and zeta potential of −39.02 ± 5.71 mV with a polydispersity index (PDI) of 0.419 ± 0.073. In addition, scanning electron microscopy (SEM) revealed the porous surface texture of WFA-NS. In vitro anticancer activity (SRB assay) results showed that WFA–NS exhibited almost twice the anticancer efficacy against MCF-7 cells (IC50 = 1.57 ± 0.091 µM), as quantified by flow cytometry and comet tests. Moreover, fluorescence microscopy with DAPI staining and analysis of DNA fragmentation revealed apoptosis as a mechanism of cancer cell death. The anticancer activity of WFA-NS was further determined in vivo and results were compared to cisplatin. The anticancer activity of WFA-NS was further investigated in vivo, and the data were consistent to those obtained with cisplatin. At Day 10, WFA-NS (10 mg/kg) significantly reduced tumour volume to 72 ± 6%, which was comparable to cisplatin (10 mg/kg), which reduced tumour volume to 78 ± 8%. Finally, the outcomes of molecular modeling (in silico) also suggested that WFA established a stable connection with nanosponges, generating persistent hydrophobic contacts (polar and nonpolar) and helping with the attractive delayed-release features of the formulation. Collectively, all the findings support the use of WFA in nanosponges as a prototype for cancer treatment, and opened up new avenues for increasing the efficacy of natural product-derived medications.


Cartilage ◽  
2021 ◽  
pp. 194760352110572
Author(s):  
Leonardo do Nascimento ◽  
Natália Fontana Nicoletti ◽  
Manuela Peletti-Figueiró ◽  
Daniel Marinowic ◽  
Asdrubal Falavigna

Objectives This study aimed to evaluate the efficacy of hyaluronic acid in the viability and proliferation profile of human femoral-tibial joint cartilage affected by osteoarthritis using in vitro models of chondrocytes in a 2-dimensional (2D)- and 3-dimensional (3D)-based culture model by spheroids. Design In vitro study of knee cartilage affected by osteoarthritis that required surgical treatment. Samples were cultured and exposed to hyaluronic acid (100 and 500 μM; intervention group) or vehicle solution. In monolayer or 2D culture, proliferation and cell viability were measured, and nuclear morphometry was analyzed by 4′,6′-diamino-2-fenil-indol (DAPI) staining. The 3D-based culture established from the culture of articular cartilage of patients submitted to total knee arthroplasty evaluated the diameter, viability, and fusion ability of the chondrospheres created. Results Samples from 3 patients resulted in viable cultures, with chondrocyte cells exhibiting a potential for cell proliferation and viability to establish a culture. Hyaluronic acid (100 and 500 μM) improved chondrocyte viability and proliferation up to 72 hours in contact when compared with the control group, and no nuclear irregularities in morphology cell characteristics were observed by DAPI. In the 3D evaluation, hyaluronic acid (500 μM) improved the cellular feedback mechanisms, increasing the survival and maintenance of the chondrospheres after 7 days of analysis, showing the intrinsic capacity of chondrospheres grouped in the attempt to rearrange and reestablish new articular tissue. Conclusions The 2D- and 3D-based culture models with hyaluronic acid improved chondrocyte viability and proliferation and demonstrated the ability of freshly formed chondrospheres to undergo fusion when placed together in the presence of hyaluronic acid.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aleix Elizalde-Torrent ◽  
Claudia Trejo-Soto ◽  
Lourdes Méndez-Mora ◽  
Marc Nicolau ◽  
Oihane Ezama ◽  
...  

AbstractThe spleen is a hematopoietic organ that participates in cellular and humoral immunity. It also serves as a quality control mechanism for removing senescent and/or poorly deformable red blood cells (RBCs) from circulation. Pitting is a specialized process by which the spleen extracts particles, including malaria parasites, from within circulating RBCs during their passage through the interendothelial slits (IES) in the splenic cords. To study this physiological function in vitro, we have developed two microfluidic devices modeling the IES, according to the hypothesis that at a certain range of mechanical stress on the RBC, regulated through both slit size and blood flow, would force it undergo the pitting process without affecting the cell integrity. To prove its functionality in replicating pitting of malaria parasites, we have performed a characterization of P. falciparum-infected RBCs (P.f.-RBCs) after their passage through the devices, determining hemolysis and the proportion of once-infected RBCs (O-iRBCs), defined by the presence of a parasite antigen and absence of DAPI staining of parasite DNA using a flow cytometry-based approach. The passage of P.f.-RBCs through the devices at the physiological flow rate did not affect cell integrity and resulted in an increase of the frequency of O-iRBCs. Both microfluidic device models were capable to replicate the pitting of P.f.-RBCs ex vivo by means of mechanical constraints without cellular involvement, shedding new insights on the role of the spleen in the pathophysiology of malaria.


2021 ◽  
Author(s):  
Jiaan Xu ◽  
Bo Yan ◽  
Xiujuan Xiao ◽  
Qiang Yuan ◽  
Xiaoqiao Dong ◽  
...  

Abstract Background: Theabrownin (TB) is a bioactive component of tea and has been reported to exert effects against many human cancers, but its efficacy and mechanism on hepatocellular carcinoma (HCC) with different p53 genotypes remains unclarified. Methods: MTT assay, DAPI staining, flow cytometry and SA-β-gal staining were applied to evaluate the effects of TB on HCC cells. Quantitative real time PCR (qPCR) and Western blot (WB) were conducted to explore the molecular mechanism of TB. And xenograft model of zebrafish was established to evaluate the anti-tumor effect of TB.Results: MTT assays showed that TB significantly inhibited the proliferation of SK-Hep-1, HepG2, and Huh7 cells in a dose-dependent manner, of which SK-Hep-1 was the most sensitive one with the lowest IC50 values. The animal data showed that TB remarkably suppressed SK-Hep-1 tumor growth in xenograft model of zebrafish. The cellular data showed TB′s pro-apoptotic and pro-senescent effect on SK-Hep-1 cells. The molecular results revealed the mechanism of TB that p53 signaling pathway (p-ATM, p-ATR, γ-H2AX, p-Chk2, and p-p53) was activated with up-regulation of downstream senescent genes (P16, P21, IL-6 and IL-8) as well as apoptotic genes (Bim, Bax and PUMA) and proteins (Bax, c-Casp9 and c-PARP). The p53-mediated mechanism was verified by using p53-siRNA. Moreover, by using JNK-siRNA, we found JNK as a bypass regulator in TB′s mechanism. Conclusions: To sum up, TB exerted tumor-inhibitory, pro-senescent and pro-apoptotic effects on SK-Hep-1 cells through ATM-Chk2-p53 signaling axis in accompany with JNK bypass regulation. This is the first report on the pro-senescent effect and multi-target (p53 and JNK) mechanism of TB on HCC cells, providing new insights into the underlying mechanisms of TB′s anti-HCC efficacy.


Sign in / Sign up

Export Citation Format

Share Document