A natural population of the butterfly Eurema hecabe with Wolbachia-induced female-biased sex ratio not by feminization

Genome ◽  
2007 ◽  
Vol 50 (4) ◽  
pp. 365-372 ◽  
Author(s):  
Satoko Narita ◽  
Masashi Nomura ◽  
Daisuke Kageyama

In butterflies, the adult sex ratio observed in the field is usually male-biased, although the sex ratio of their progeny is 1:1. This is due to the higher motility and larger behavioral range of males than females. As expected, the sex ratio of Eurema hecabe butterflies collected at 6 localities throughout Japan was male-biased. However, in Tsukuba, located in the central part of Japan, the sex ratio was found to be biased toward females. Their progeny reared in the laboratory also exhibited a female-biased sex ratio. A single strain of Wolbachia is considered to be the cause of the sex-ratio distortion, because antibiotic treatment reversed the sex ratio to 1:1, and only a single nucleotide sequence of wsp, a highly variable Wolbachia gene, was detected by molecular analysis. Cytogenetic analysis excluded the possibility of feminization as the underlying mechanism. In addition, when the wild-caught females that had already mated in nature were treated with antibiotics before oviposition, egg-hatch rates were extremely low, suggesting that the same Wolbachia strain also caused cytoplasmic incompatibility. Our findings suggest the possibility that a single strain of Wolbachia induces 2 distinct reproductive manipulations in the same host.

2021 ◽  
Vol 112 (2) ◽  
pp. 155-164
Author(s):  
Suzanne Edmands

Abstract Rising global temperatures threaten to disrupt population sex ratios, which can in turn cause mate shortages, reduce population growth and adaptive potential, and increase extinction risk, particularly when ratios are male biased. Sex ratio distortion can then have cascading effects across other species and even ecosystems. Our understanding of the problem is limited by how often studies measure temperature effects in both sexes. To address this, the current review surveyed 194 published studies of heat tolerance, finding that the majority did not even mention the sex of the individuals used, with <10% reporting results for males and females separately. Although the data are incomplete, this review assessed phylogenetic patterns of thermally induced sex ratio bias for 3 different mechanisms: sex-biased heat tolerance, temperature-dependent sex determination (TSD), and temperature-induced sex reversal. For sex-biased heat tolerance, documented examples span a large taxonomic range including arthropods, chordates, protists, and plants. Here, superior heat tolerance is more common in females than males, but the direction of tolerance appears to be phylogenetically fluid, perhaps due to the large number of contributing factors. For TSD, well-documented examples are limited to reptiles, where high temperature usually favors females, and fishes, where high temperature consistently favors males. For temperature-induced sex reversal, unambiguous cases are again limited to vertebrates, and high temperature usually favors males in fishes and amphibians, with mixed effects in reptiles. There is urgent need for further work on the full taxonomic extent of temperature-induced sex ratio distortion, including joint effects of the multiple contributing mechanisms.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1169-1180 ◽  
Author(s):  
Daven C Presgraves ◽  
Emily Severance ◽  
Gerald S Willrinson

Meiotically driven sex chromosomes can quickly spread to fixation and cause population extinction unless balanced by selection or suppressed by genetic modifiers. We report results of genetic analyses that demonstrate that extreme female-biased sex ratios in two sister species of stalk-eyed flies, Cyrtodiopsis dalmanni and C. whitei, are due to a meiotic drive element on the X chromosome (Xd). Relatively high frequencies of Xd in C. dalmanni and C. whitei (13–17% and 29%, respectively) cause female-biased sex ratios in natural populations of both species. Sex ratio distortion is associated with spermatid degeneration in male carriers of Xd. Variation in sex ratios is caused by Y-linked and autosomal factors that decrease the intensity of meiotic drive. Y-linked polymorphism for resistance to drive exists in C. dalmanni in which a resistant Y chromosome reduces the intensity and reverses the direction of meiotic drive. When paired with Xd, modifying Y chromosomes (Ym) cause the transmission of predominantly Y-bearing sperm, and on average, production of 63% male progeny. The absence of sex ratio distortion in closely related monomorphic outgroup species suggests that this meiotic drive system may predate the origin of C. whitei and C. dalmanni. We discuss factors likely to be involved in the persistence of these sex-linked polymorphisms and consider the impact of Xd on the operational sex ratio and the intensity of sexual selection in these extremely sexually dimorphic flies.


1991 ◽  
Vol 69 (1) ◽  
pp. 208-212 ◽  
Author(s):  
Dan L. Johnson ◽  
Heather C. Proctor

The effect of predator presence on the adult sex ratio of a spider mite (Panonychus ulmi) was examined in a field experiment. Phytoseiid predators (chiefly Typhlodromus occidentalis) were removed from 32 trees harboring P. ulmi populations, and allowed to remain at natural levels on 32 other trees. Both total population density and proportion of males in the prey population were significantly higher in predator-free trees. Mechanisms that could explain the increase in the proportion of males are examined. The most probable is that greater male activity results in a higher encounter rate between predator and prey, and that subsequent higher male mortality when predators are present exaggerates the female-biased sex ratio. The theoretical effects of sex-biased predation on diplo-diploid and haplo-diploid organisms are discussed.


2018 ◽  
Vol 28 (23) ◽  
pp. 3864-3870.e4 ◽  
Author(s):  
Phineas T. Hamilton ◽  
Christina N. Hodson ◽  
Caitlin I. Curtis ◽  
Steve J. Perlman

Parasitology ◽  
2007 ◽  
Vol 134 (10) ◽  
pp. 1363-1367 ◽  
Author(s):  
E. R. HAINE ◽  
S. MOTREUIL ◽  
T. RIGAUD

SUMMARYVertically transmitted parasites may have positive, neutral or negative effects on host fitness, and are also predicted to exhibit sex-specific virulence to increase the proportion or fitness of the transmitting sex. We investigated these predictions in a study on the survival and sex ratio of offspring of the amphipod Gammarus roeseli from females infected by the vertically transmitted microsporidia Nosema granulosis. We found, to our knowledge, the first evidence for a positive relationship between N. granulosis infection and host survival. Infection was associated with sex ratio distortion, not by male-killing, but probably by parasite-induced feminization of putative G. roeseli males. This microsporidia also feminizes another amphipod host, Gammarus duebeni, which is phylogenetically and biogeographically distant from G. roeseli. Our study suggests that the reproductive system of gammarids is easily exploited by these vertically-transmitted parasites, although the effects of infections on host fitness may depend on specific host-parasite species interactions.


Genome ◽  
2002 ◽  
Vol 45 (5) ◽  
pp. 871-880 ◽  
Author(s):  
A Gariou-Papalexiou ◽  
G Yannopoulos ◽  
A Zacharopoulou ◽  
R H Gooding

Photographic polytene chromosome maps from trichogen cells of pharate adult Glossina morsitans submorsitans were constructed. Using the standard system employed to map polytene chromosomes of Drosophila, the characteristic landmarks were described for the X chromosome and the two autosomes (L1 and L2). Sex-ratio distortion, which is expressed in male G. m. submorsitans, was found to be associated with an X chromosome (XB) that contains three inversions in each arm. Preliminary data indicate no differences in the fecundity of XAXA and XAXB females, but there are indications that G. m. submorsitans in colonies originating from Burkina Faso and Nigeria have genes on the autosomes and (or) the Y chromosome that suppress expression of sex-ratio distortion.Key words: tsetse, Glossina morsitans submorsitans, polytene chromosome maps, inversions, sex-ratio distortion.


Sign in / Sign up

Export Citation Format

Share Document