daphnia magna
Recently Published Documents


TOTAL DOCUMENTS

2988
(FIVE YEARS 622)

H-INDEX

91
(FIVE YEARS 14)

2022 ◽  
Vol 45 ◽  
pp. 102485
Author(s):  
Carlos Eduardo Lach ◽  
Camila Schwarz Pauli ◽  
Aline Scheller Coan ◽  
Edesio Luiz Simionatto ◽  
Luciano André Deitos Koslowski

2022 ◽  
Author(s):  
E. S. Zadereev ◽  
T. S. Lopatina ◽  
S. D. Ovchinnikov ◽  
N. A. Oskina ◽  
A. V. Drobotov ◽  
...  
Keyword(s):  

2022 ◽  
Vol 2 (1) ◽  
Author(s):  
Anita Jemec Kokalj ◽  
Andraž Dolar ◽  
Damjana Drobne ◽  
Marjan Marinšek ◽  
Matej Dolenec ◽  
...  

AbstractThe COVID-19 pandemic has increased the use of disposable plastics, including medical masks, which have become a necessity in our daily lives. As these are often improperly disposed of, they represent an important potential source of microplastics in the environment. We prepared microplastics from polypropylene medical masks and characterised their size, shape, organic chemical leaching, and acute toxicity to the planktonic crustacean Daphnia magna. The three layers of the masks were separately milled and characterised. Each of the inner frontal, middle filtering, and outer layers yielded different types of microplastics: fibres were obtained from the inner and outer layer, but irregular fragments from the middle layer. The shape of the obtained microplastics differed from the initial fibrous structure of the intact medical mask layers, which indicates that the material is deformed during cryo-milling. The chemical compositions of plastics-associated chemicals also varied between the different layers. Typically, the inner layer contained more chemicals related to antimicrobial function and flavouring. The other two layers also contained antioxidants and their degradation products, plasticisers, cross-linking agents, antistatic agents, lubricants, and non-ionic surfactants. An acute study with D. magna showed that these microplastics do not cause immobility but do physically interact with the daphnids. Further long-term studies with these microplastics are needed using a suite of test organisms. Indeed, studies with other polypropylene microplastics have shown numerous adverse effects on other organisms at concentrations that have already been reported in the environment. Further efforts should be made to investigate the environmental hazards of polypropylene microplastics from medical masks and how to handle this new source of environmental burden.


2022 ◽  
Vol 230 ◽  
pp. 113147
Author(s):  
Shengzi Duan ◽  
Yourong Fu ◽  
Shanshan Dong ◽  
Yunfeng Ma ◽  
Hangyu Meng ◽  
...  

Author(s):  
Yingdong Li ◽  
Hongbin Liu ◽  
Wen-Xiong Wang

Despite the extensive studies on the toxicity of antibacterial silver (either ionic Ag+ or nanoparticle - AgNPs) at the cellular or organismic levels, little is known about their differences in...


2022 ◽  
Vol 964 (1) ◽  
pp. 012012
Author(s):  
V T Nguyen ◽  
A T Huynh ◽  
T S Dao

Abstract The occurrence of plastic additives and their ecological impacts have attracted much attention in recent years globally. Among plastic additives, the trace metals (e.g., Cd, Pb) are widely used as color pigments and stabilizers, whereas bisphenol A (BPA) is added to enhance the desired physical characteristics of plastic products. However, these additives can easily leach out of plastic materials and enter the aquatic environment causing risks to aquatic ecosystems. Although the toxicity of a single additive on various aquatic organisms has been studied, the responses of zooplankton exposed to the mixed plastic additives have not been fully understood. Therefore, this study aims to evaluate the effects of the binary mixtures (BPA+Cd, BPA+Pb) and trinary mixture (BPA+Pb+Cd) at the metal concentrations of 5 µg/L and BPA level of 50 µg/ L on the life history traits and food feeding rate of the freshwater micro-crustacean, Daphnia magna. The results showed exposures to these mixtures for 24h could significantly enhance the food feeding rate of D. magna from 2.5 – 5.8 times higher than the control. The survival rate was decreased from 50 – 90% in the organisms exposed to these mixtures after 18 incubated days. We found a synergistic effect of BPA+Pb but an antagonistic effect of BPA+Pb+Cd on the survivorship of D. magna. Similarly, the organisms in the exposures delayed their maturity age and reduced their reproduction. The potent impact order of the mixtures on D. magna was BPA+Cd > BPA+Pb+Cd > BPA+Pb. Our results evidenced the adverse effects of plastic additive mixtures on aquatic organisms. Therefore, the use and disposal of plastic materials and plastic additives should be paid more attention to protect the environment, ecosystem, and human health. Moreover, our findings proved that the toxicity of multi-contaminants on organisms could be unpredictable even the toxicity of a single contaminant is known.


Sign in / Sign up

Export Citation Format

Share Document