THE CONTROL OF ALDEHYDE OXIDASE AND XANTHINE DEHYDROGENASE ACTIVITIES BY THE CINNAMON GENE IN DROSOPHILA MELANOGASTER

1979 ◽  
Vol 21 (4) ◽  
pp. 457-471 ◽  
Author(s):  
Michael M. Bentley ◽  
John H. Williamson

The isolation and characterization of 16 alleles of the cinnamon (cin, 1-0.0) locus in Drosophila melanogaster are described. The effects of cin on viability and the maternal effect of cin+ on eye color have been separated from each other as well as from the deficiency for aldehyde oxidase (AO) and xanthine dehydrogenase (XDH) activities. These 16 alleles have been assigned to four complementation groups based on analysis of AO and XDH activities in all heteroallelic female combinations. Zygotic complementation for lethality and eye color has been characterized and allows the ordering of cin alleles in a consistent pattern for the ability to produce viable zygotes and/or complement for the eye color phene. Several complementing cin combinations were analyzed for heat stability of AO. In all cases, AO from allelic heterozygotes was more heat labile than wild-type AO. One cin allele, cin13, produces heat labile AO in combination with cin+ from Oregon-R, hence exhibiting a "dominant" heat stability phenotype.

1982 ◽  
Vol 24 (1) ◽  
pp. 11-17 ◽  
Author(s):  
M. M. Bentley ◽  
J. H. Williamson

The effects of five new mal alleles on aldehyde oxidase (AO) and xanthine dehydrogenase (XDH) activities and CRM levels in Drosophila melanogaster are described. These alleles were isolated by taking full advantage of the pleiotropic phenotype exhibited by all previously described mal alleles and represent at least three unique examples of mal function. At least one of these alleles is a representative of a new complementation group. Two other alleles exhibit a wild-type eye color in homozygous stock and one of these is "leaky", exhibiting some 50% of the XDH activity normally found in Oregon-R control flies and some 12% of the AO activity. CRM and activity levels have been quantitated for both enzymes in all allelic heterozygotes. XDH-CRM levels vary only slightly around wild-type levels while AO-CRM levels appear much more sensitive to mutational alterations.


1979 ◽  
Vol 34 (3-4) ◽  
pp. 304-305 ◽  
Author(s):  
Michael M. Bentley ◽  
John H. Williamson

Abstract A new locus, Aldox-2, which affects the activity and heat stability of aldehyde oxidase in D. melanogaster is described. The Aldox-2 locus is localized to map position 86 on chromosome 2, between c and px. Aldehyde oxidase activity in Aldox-2 homozygotes is approximately 25 - 30% that of the Oregon-R wild-type control strain. The enzyme from the mutant stock is much more heat labile than is the enzyme from the wild-type strain. Both the activity and heat phenotypes are completely recessive.


Genetics ◽  
1980 ◽  
Vol 95 (3) ◽  
pp. 649-660
Author(s):  
A Brian Tomsett ◽  
Reginald H Garrett

ABSTRACT The isolation and characterization of mutants altered for nitrate assimilation in Neurospora crassa is described, The mutants isolated can be subdivided into five classes on the basis of growth tests that correspond to the growth patterns of existing mutants at six distinct loci. Mutants with growth characteristics like those of nit-2, nit-3 and nit-6 are assigned to those loci on the basis of noncomplementation and lack of recombination. Mutants that, from their growth patterns, appear to lack the molybdenum-containing cofactor for both nitrate reductase and xanthine dehydrogenase subdivide into three loci (nit-7, nit4 and nit-9), all of which are genetically distinct from nit-1. nit-9 is a complex locus consisting of three complementation groups and thus appears similar to the cnxABC locus of Asperillus nidulans. Extensive complementational and recombinational analyses reveal that nit-4 and nit-5 are alleles of the same locus, and two new alleles of that locus have been isolated. The results indicate that, as in A. nidulans, nitrate assimilation in N. crassa requires at least four loci (nit-1,7,8 and 9) to produce the molybdenum co-factor for nitrate reductase (and xanthine dehydrogenase), one locus (nit-3) to code for the nitrate reductase apoprotein, one locus (nit-6) to code for the nitrite reductase approtein and only one locus (nit-4/5) for the regulation of induction of the pathway by nitrate and nitrite.


1981 ◽  
Vol 23 (4) ◽  
pp. 597-609 ◽  
Author(s):  
M. M. Bentley ◽  
J. H. Williamson ◽  
M. J. Oliver

The effects of dietary sodium molybdate and sodium tungstate on eye color and aldehyde oxidase and xanthine dehydrogenase activities have been determined in Drosophila melanogaster. Dietary sodium tungstate administration has been used as a screening procedure to identify two new lxd alleles. Tungstate administration results in increased frequencies of "brown-eyed" flies in lxd stocks and a coordinate decrease in AO and XDH activities in all genotypes tested. The two new lxd alleles affect AO and XDH in a qualitatively but not quantitatively similar fashion to the original lxd allele. AO and XDH activity and AO-CRM levels appear much more sensitive to mutational perturbations of this gene-enzyme system than do XDH-CRM levels in the genotypes tested.


1978 ◽  
Vol 20 (4) ◽  
pp. 545-553 ◽  
Author(s):  
John H. Williamson ◽  
Michael M. Bentley ◽  
Melvin J. Oliver ◽  
Billy W. Geer

In Drosophila melanogaster aldehyde oxidase occurs in at least two forms that can be separated electrophoretically. The mutant allele lao (low aldehyde oxidase activity) causes a deficiency of the major form of this enzyme. Immunoelectrophoretic analyses suggest that lao homozygotes produce aldehyde oxidase cross-reacting-material in nearly wild-type levels. Although aldehyde oxidase from the mutant stock is heat labile, properties such as Km and pH optima are not different from the normal enzyme.


Genetics ◽  
1987 ◽  
Vol 116 (2) ◽  
pp. 233-239
Author(s):  
James B Boyd ◽  
Paul V Harris

ABSTRACT A mutation abolishing photorepair has been localized to map position 56.8 centimorgans on the second chromosome of Drosophila melanogaster. Strains homozygous for the phr allele are totally devoid of photorepair and partially deficient in excision repair. Both defects map to the chromosomal region between pr and c. Since a homozygous phr stock exhibits reduced photoreactivation, the corresponding wild-type allele plays a significant role in UV resistance.


Science ◽  
1960 ◽  
Vol 131 (3416) ◽  
pp. 1810-1811 ◽  
Author(s):  
Edward Glassman ◽  
William Pinkerton

Two "allelic" Drosophila melanogaster mutants which are deficient in xanthine dehydrogenase can complement one another in heterozygotes. This complementation is due to the production of small amounts of xanthine dehydrogenase, enough of which is present to restore the normal eye color. However, not enough of the enzyme is present to produce normal amounts of the enzyme products, or to reduce the accumulation of the enzyme substrates to levels found in wild-type flies.


Genetics ◽  
1976 ◽  
Vol 84 (3) ◽  
pp. 485-506
Author(s):  
J B Boyd ◽  
M D Golino ◽  
T D Nguyen ◽  
M M Green

ABSTRACT Thirteen X-linked mutants have been isolated in Drosophila melanogaster which render male and homozygous female larvae sensitive to the mutagen methyl methanesulfonate. Their characterization and preliminary assignment to functional groups is described. Four of these mutants are alleles of mei-41 (Baker and Carpenter 1972). Like previously isolated alleles of this locus, these mutants reduce fertility and increase loss and nondisjunction of the X-chromosome in homozygous females. The remaining mutants have been tentatively assigned to six functional groups (two mutants to the mus(1)101 locus, two to mus(1)102, two to mus(1)103, and one each to mus(1)104, mus(1)105, and mus(1)106). Several of the complementation groups can be distinguished on the basis of nondisjunction and cross sensitivity to mutagens. Females homozygous for the mei-41, mus(1)101 and mus(1)102 mutants exhibit elevated levels of nondisjunction. Mutants belonging to complementation groups mei-41, mus(1)101, and mus(1)104 are sensitive to nitrogen mustard (HN2) in addition to their MMS sensitivity. Among these mutants there is currently a direct correlation between sensitivity to HN2, sensitivity to 2-acetylaminofluorene and a deficiency in post-replication repair (Boyd and Setlow 1976). Only the mei-41 mutants are hypersensitive to UV radiation, although several of the mutants exhibit sensitivity to Y-rays. Semidominance is observed in female larvae of the mei-41, mus(1)104, and mus(1)103 mutants after exposure to high concentrations of MMS. The properties of the mutants generally conform to a pattern which has been established for related mutants in yeast. Additional properties of these mutants are summarized in Table 9.


Sign in / Sign up

Export Citation Format

Share Document