uv resistance
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 94)

H-INDEX

34
(FIVE YEARS 6)

Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132100
Author(s):  
Yuchun Li ◽  
Jinzhao Wang ◽  
Boqiong Xue ◽  
Shuheng Wang ◽  
Peng Qi ◽  
...  

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Chi Zhang ◽  
Chunyan Hu ◽  
Shuo Chang ◽  
Jianchao Zhan ◽  
Jiajia Shen ◽  
...  

In this work, we present a surfactant-free miniemulsion approach to obtain silica-based core-shell nanocapsules with a phase change material (PCM) core via in-situ hydrolytic polycondensation of precursor hyperbranched polyethoxysiloxanes (PEOS) as silica shells. The obtained silica-based core-shell nanocapsules (PCM@SiO2), with diameters of ~400 nm and silica shells of ~14 nm, reached the maximum core content of 65%. The silica shell had basically no significant influence on the phase change behavior of PCM, and the PCM@SiO2 exhibited a high enthalpy of melt and crystallization of 123–126 J/g. The functional textile with PCM@SiO2 has been proposed with thermoregulation and acclimatization, ultraviolet (UV) resistance and improved mechanical properties. The thermal property tests have shown that the functional textile had good thermal stability. The functional textile, with a PCM@SiO2 concentration of 30%, was promising, with enthalpies of melting and crystallization of 27.7 J/g and 27.8 J/g, and UV resistance of 77.85. The thermoregulation and ultraviolet protection factor (UPF) value could be maintained after washing 10 times, which demonstrated that the functional textile had durability. With good thermoregulation and UV resistance, the multi-functional textile shows good prospects for applications in thermal comfort and as protective and energy-saving textile.


Author(s):  
Jinming Wan ◽  
Jun Xu ◽  
Shiyun Zhu ◽  
Jinpeng Li ◽  
Bin Wang ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Reinhold Stockenhuber ◽  
Reiko Akiyama ◽  
Nicolas Tissot ◽  
Misako Yamazaki ◽  
Michele Wyler ◽  
...  

As sessile organisms, plants are subjected to fluctuating sunlight including potentially detrimental ultraviolet-B radiation (UV-B). In Arabidopsis thaliana, experiments under controlled conditions have shown that UV RESISTANCE LOCUS 8 (UVR8) controls photomorphogenic responses for acclimation and tolerance to UV-B; however, its long-term impacts on plant performance remain poorly understood in naturally fluctuating environments. Here we quantified the survival and reproduction of different Arabidopsis mutant genotypes in diverse field and laboratory conditions. We found that uvr8 mutants produced more fruits than wild type in growth chambers with artificial low UV-B conditions but not in natural field conditions. Importantly, independent double mutants of UVR8 and the blue-light photoreceptor gene CRYPTOCHROME 1 (CRY1) in two genetic backgrounds showed a drastic reduction in fitness in the field. UV-B attenuation experiments in field conditions and supplemental UV-B in growth chambers demonstrated that UV-B caused the conditional cry1 uvr8 lethality phenotype. RNA sequencing in different conditions revealed a large number of genes with statistical interaction of UVR8 and CRY1 mutations in the presence of UV-B in the field. Among them, Gene Ontology analysis identified enrichment of categories related to UV-B response, oxidative stress, photoprotection and DNA damage repair. Our study demonstrates the functional importance of the UVR8-mediated response across life stages in natura, which is partially redundant with CRY1, and provides an integral picture of gene expression associated with plant environmental responses under diverse environmental conditions.


2021 ◽  
Author(s):  
Erin C. Carr ◽  
Quin Barton ◽  
Sarah Grambo ◽  
Mitchell Sullivan ◽  
Cecile M. Renfro ◽  
...  

AbstractBlack yeasts are polyextremotolerant fungi that contain high amounts of melanin in their cell wall and maintain a primarily yeast form. These fungi grow in xeric, nutrient deplete environments which implies that they require highly flexible metabolisms and the ability to form lichen-like mutualisms with nearby algae and bacteria. However, the exact ecological niche and interactions between these fungi and their surrounding community is not well understood. We have isolated two novel black yeast fungi of the genus Exophiala: JF 03-3F “Goopy” E. viscosium and JF 03-4F “Slimy” E. limosus, which are from dryland biological soil crusts. A combination of whole genome sequencing and various phenotyping experiments have been performed on these isolates to determine their fundamental niches within the biological soil crust consortium. Our results reveal that these Exophiala spp. are capable of utilizing a wide variety of carbon and nitrogen sources potentially from symbiotic microbes, they can withstand many abiotic stresses, and can potentially provide UV resistance to the crust community in the form of secreted melanin. Besides the identification of two novel species within the genus Exophiala, our study also provides new insight into the production and regulation of melanin in extremotolerant fungi.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2778
Author(s):  
Weidong Li ◽  
Yu Xue ◽  
Ming He ◽  
Jiaqiang Yan ◽  
Lucian A. Lucia ◽  
...  

A deep eutectic solvent (DES) composed of sulfamic acid and glycerol allowed for the sustainable preparation of cellulose nanofibrils (CNF) with simultaneous sulfation. The reaction time and the levels of sulfamic acid demonstrated that fibers could be swelled and sulfated simultaneously by a sulfamic acid-glycerol-based DES and swelling also promoted sulfation with a high degree of substitution (0.12). The DES-pretreated fibers were further nanofibrillated by a grinder producing CNF with diameters from 10 nm to 25 nm. The crystallinity ranged from 53–62%, and CNF maintained the original crystal structure. DES pretreatment facilitated cellulose nano-fibrillation and reduced the energy consumption with a maximum reduction of 35%. The films prepared from polyvinyl alcohol (PVA) and CNF showed good UV resistance ability and mechanical properties. This facile and efficient method provided a more sustainable strategy for the swelling, functionalization and nano-fibrillation of cellulose, expanding its application to UV-blocking materials and related fields.


2021 ◽  
Vol 9 ◽  
Author(s):  
Minting Xie ◽  
Zhendong Chen ◽  
Yue Xia ◽  
Minsheng Lin ◽  
Jiaqi Li ◽  
...  

Tricin as a monomer of grass lignin with unique biological properties is beneficial to human health with the potential for various applications. The abundant grass lignin could be an alternative source for tricin if an effective separation method is available. In this study, we used different lignin preparations, including alkali lignin (AL), mild acidolysis lignin (MAL), cellulase enzymatic lignin (CEL), γ-valerolactone lignin (GVL), and organosolv lignin (OL), to investigate the effect of different fractionation methods on the tricin content of the wheat straw lignin. The tricin signal of different lignins can be clearly identified by 2D heteronuclear singular quantum correlation (HSQC) spectra. GVL showed the highest tricin level among these lignin samples as the tricin content of GVL was accounted to be 8.6% by integrals. The tricin content was carefully determined using thioacidolysis combined with high-performance liquid chromatography-mass spectrometric (HPLC-MS), and the quantitative results of tricin by HPLC-MS were basically consistent with that of 2D HSQC integrals. Both methods have proved that the tricin contents of lignins isolated under acid conditions were significantly higher than that of AL. In addition, the determination of the sun protection factors (SPF) of lignin-based sunscreen and antioxidant activity of lignin preparations indicated that reserving more tricin was beneficial to the UV resistance of lignin samples. Therefore, this study not only provides new insights for the extraction methods of lignin with high tricin content but also is beneficial to the future study on the application of tricin and tricin-lignin.


2021 ◽  
Author(s):  
Roman Podolec ◽  
Timothee B. Wagnon ◽  
Manuela Leonardelli ◽  
Henrik Johansson ◽  
Roman Ulm

Plants undergo photomorphogenic development in the presence of light. Photomorphogenesis is repressed by the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which binds substrates through their valine-proline (VP) motifs. The UV RESISTANCE LOCUS8 (UVR8) photoreceptor senses UV-B and inhibits COP1 through cooperative binding of its own VP motif mimicry and its photosensing core to COP1, thereby preventing COP1 binding to substrates, including the bZIP transcriptional regulator ELONGATED HYPOCOTYL5 (HY5). As a key promoter of visible light and UV-B photomorphogenesis, HY5 functions together with the B-box family transcription factors BBX20-22 that were recently described as HY5 rate-limiting coactivators under red light. Here we describe a hypermorphic bbx21-3D mutant with enhanced photomorphogenesis, which carries a proline-314 to leucine mutation in the VP motif that impairs interaction with and regulation through COP1. We show that BBX21 and BBX22 are UVR8-dependently stabilized after UV-B exposure, which is counteracted by a repressor induced by HY5/BBX activity. bbx20 bbx21 bbx22 mutants under UV-B are impaired in hypocotyl growth inhibition, photoprotective pigment accumulation, and expression of several HY5-dependent genes. We conclude that BBX20-22 importantly contribute to HY5 activity in a subset of UV-B responses, but that additional, presently unknown coactivators for HY5 are functional in early UVR8 signaling.


Sign in / Sign up

Export Citation Format

Share Document