Aldehyde Oxidase and Xanthine Dehydrogenase from Wild-Type Drosophila melanogaster and Immunologically Cross-Reacting Material from ma-1 Mutants. Purification by Immunoadsorption and Characterization

1976 ◽  
Vol 62 (3) ◽  
pp. 591-600 ◽  
Author(s):  
Roger Y. ANDRES
1982 ◽  
Vol 24 (1) ◽  
pp. 11-17 ◽  
Author(s):  
M. M. Bentley ◽  
J. H. Williamson

The effects of five new mal alleles on aldehyde oxidase (AO) and xanthine dehydrogenase (XDH) activities and CRM levels in Drosophila melanogaster are described. These alleles were isolated by taking full advantage of the pleiotropic phenotype exhibited by all previously described mal alleles and represent at least three unique examples of mal function. At least one of these alleles is a representative of a new complementation group. Two other alleles exhibit a wild-type eye color in homozygous stock and one of these is "leaky", exhibiting some 50% of the XDH activity normally found in Oregon-R control flies and some 12% of the AO activity. CRM and activity levels have been quantitated for both enzymes in all allelic heterozygotes. XDH-CRM levels vary only slightly around wild-type levels while AO-CRM levels appear much more sensitive to mutational alterations.


1979 ◽  
Vol 21 (4) ◽  
pp. 457-471 ◽  
Author(s):  
Michael M. Bentley ◽  
John H. Williamson

The isolation and characterization of 16 alleles of the cinnamon (cin, 1-0.0) locus in Drosophila melanogaster are described. The effects of cin on viability and the maternal effect of cin+ on eye color have been separated from each other as well as from the deficiency for aldehyde oxidase (AO) and xanthine dehydrogenase (XDH) activities. These 16 alleles have been assigned to four complementation groups based on analysis of AO and XDH activities in all heteroallelic female combinations. Zygotic complementation for lethality and eye color has been characterized and allows the ordering of cin alleles in a consistent pattern for the ability to produce viable zygotes and/or complement for the eye color phene. Several complementing cin combinations were analyzed for heat stability of AO. In all cases, AO from allelic heterozygotes was more heat labile than wild-type AO. One cin allele, cin13, produces heat labile AO in combination with cin+ from Oregon-R, hence exhibiting a "dominant" heat stability phenotype.


Genetics ◽  
1974 ◽  
Vol 76 (2) ◽  
pp. 289-299
Author(s):  
Margaret McCarron ◽  
William Gelbart ◽  
Arthur Chovnick

ABSTRACT A convenient method is described for the intracistronic mapping of genetic sites responsible for electrophoretic variation of a specific protein in Drosophila melanogaster. A number of wild-type isoalleles of the rosy locus have been isolated which are associated with the production of electrophoretically distinguishable xanthine dehydrogenases. Large-scale recombination experiments were carried out involving null enzyme mutants induced on electrophoretically distinct wild-type isoalleles, the genetic basis for which is followed as a nonselective marker in the cross. Additionally, a large-scale recombination experiment was carried out involving null enzyme rosy mutants induced on the same wild-type isoallele. Examination of the electrophoretic character of crossover and convertant products recovered from the latter experiment revealed that all exhibited the same parental electrophoretic character. In addition to documenting the stability of the xanthine dehydrogenase electrophoretic character, this observation argues against a special mutagenesis hypothesis to explain conversions resulting from allele recombination studies.


1979 ◽  
Vol 34 (3-4) ◽  
pp. 304-305 ◽  
Author(s):  
Michael M. Bentley ◽  
John H. Williamson

Abstract A new locus, Aldox-2, which affects the activity and heat stability of aldehyde oxidase in D. melanogaster is described. The Aldox-2 locus is localized to map position 86 on chromosome 2, between c and px. Aldehyde oxidase activity in Aldox-2 homozygotes is approximately 25 - 30% that of the Oregon-R wild-type control strain. The enzyme from the mutant stock is much more heat labile than is the enzyme from the wild-type strain. Both the activity and heat phenotypes are completely recessive.


1981 ◽  
Vol 23 (4) ◽  
pp. 597-609 ◽  
Author(s):  
M. M. Bentley ◽  
J. H. Williamson ◽  
M. J. Oliver

The effects of dietary sodium molybdate and sodium tungstate on eye color and aldehyde oxidase and xanthine dehydrogenase activities have been determined in Drosophila melanogaster. Dietary sodium tungstate administration has been used as a screening procedure to identify two new lxd alleles. Tungstate administration results in increased frequencies of "brown-eyed" flies in lxd stocks and a coordinate decrease in AO and XDH activities in all genotypes tested. The two new lxd alleles affect AO and XDH in a qualitatively but not quantitatively similar fashion to the original lxd allele. AO and XDH activity and AO-CRM levels appear much more sensitive to mutational perturbations of this gene-enzyme system than do XDH-CRM levels in the genotypes tested.


Genetics ◽  
1979 ◽  
Vol 91 (4) ◽  
pp. 695-722
Author(s):  
Victoria Finnerty ◽  
George Johnson

ABSTRACT Xanthine dehydrogenase (XDH) and aldehyde oxidase (AO) in Drosophila melanogaster require for their activity the action of another unlinked locus, maroon-like (mal), While the XDH and A 0 loci are on chromosome 3, mal maps to the X chromosome. Although functional mal gene product is required for XDH and A 0 activity, it is possible to examine the effects of mutant mal alleles in those cases when pairs of mutants complement to produce a partial restoration of activity. To test whether mal mediates a post-translational modification of the XDH and A0 proteins, we constructed several mal heteroallelic complementing stocks of Drosophila in which the third chromosomes were co-isogenic. Since all lines were co-isogenic for the XDH and A0 structural genes, any variation in these enzymes seen when comparing these stocks must have been produced by post-translational modification by mal. We examined the XDH and A 0 proteins in these stocks by gel-sieving electrophoresis, a procedure that permits independent characterization of a protein's charge and shape, and is capable of discriminating many variants not detected in routine electrophoresis. In every mal heteroallelic combination, there is a significant alteration in protein shape, when compared to wild type. The magnitude of differences in shape of XDH and AO is correlated both with differences in their enzyme activities and with differences in their thermal stabilities. As the body of this variation appears heritable, any functional differences resulting from these variants are of real genetic and evolutionary interest. A similar post-translational modification of XDH and A0 by yet another locus, lxd, was subsequently documented in an analogous manner. The pattern of electrophoretic differences produced by mal and lxd modification is similar to that reported for electrophoretic "alleles" of XDH in natural populations. The implication is that heritable variation in electrophoretic mobility at these two enzyme loci, and potentially at other loci, is not necessarily allelic to the structural gene loci.


Genetics ◽  
1981 ◽  
Vol 98 (4) ◽  
pp. 817-831
Author(s):  
George Johnson ◽  
Victoria Finnerty ◽  
Daniel Hartl

ABSTRACT Second chromosomes of D. melanogaster were isolated from a single natural population, and 40 were analyzed by gel-sieving electrophoresis for the presence of polymorphic loci on chromosome 2 that act to modify xanthine dehydrogenase and/or aldehyde oxidase, whose structural genes map to chromosome 3. Clear evidence of polymorphism for one or more xanthine dehydrogenase modifier loci was obtained.


Sign in / Sign up

Export Citation Format

Share Document