Meiotic behaviour of induced autotetraploids in Triticum L.

Genome ◽  
1990 ◽  
Vol 33 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Yang Yen ◽  
Gordon Kimber

Colchicine-induced autotetraploids of Triticum speltoides, T. longissimum, T. sharonense, T. bicorne, T. uniaristatum, T. monococcum, and T. tauschii were all morphologically similar to but larger than their diploid forms. Seed set was lower than in the diploids except for the autotetraploid T. speltoides. Meiotic analysis showed fewer quadrivalents and more bivalents than would be expected in all of these autotetraploids. Arm-pair switch, indicated by complex trivalents and quadrivalents, was found and involved 0.1% of total chromosomes in T. umbellulatum, 0.5% in T. longissimum, 0.7% in both T. sharonense and T. tauschii, 6.3% in T. bicorne, and 15.3% in T. uniaristatum.Key words: meiosis, chromosome association, arm-pair switch, chromosome pairing, bivalentization.

1970 ◽  
Vol 12 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Hugh Thomas

Chromosome pairing in the F1 hybrid between the cultivated oat Avena sativa and a diploid species A. ventricosa, and in the derived amphiploid, shows that the diploid species is related to one of the genomes of the hexaploid species. The amount of chromosome pairing observed in complex interamphiploid hybrids demonstrates further that A. ventricosa is related to the C. genome of A. sativa. However, the chromosomes of the diploid species have become differentiated from that of the C genome of A. sativa and this is readily apparent in the meiotic behaviour of both the F1 hybrid and the amphiploid.


2008 ◽  
Vol 133 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Pablo Bolaños-Villegas ◽  
Shih-Wen Chin ◽  
Fure-Chyi Chen

The development of new cultivars in Doritaenopsis Guillaum. & Lami orchids is often hindered by factors such as low seed count in hybrids. Cytological study may offer the ability to develop new hybrids by revealing cultivars with good chromosome pairing and high pollen viability, which are somewhat difficult to obtain under current breeding programs. Cross pollination, pollen viability, and chromosomal behavior during meiosis were analyzed to reveal the relation between seed fertility and capsule set in Doritaenopsis hybrids. The number of mature capsules harvested and their relative seed content were used as indices of crossing availability. The results of meiosis were evaluated according to pollen viability detected by fluorescein diacetate and quantification of sporad types by acid fuchsin staining. Chromosome number and pairing at meiosis were observed in root tips or in samples of pollen mother cells. A positive relation was found among high seed set, high frequency of viable tetrads, high degree of chromosome pairing, and low frequency of chromosomal aberrations such as inversions and translocations. On the basis of these factors, three types of hybrids could be distinguished. In type one hybrids, chromosomes paired as bivalents, pollen mother cells divided into tetrads, and capsule setting occurred after pollination of pollen acceptors. In type two hybrids, chromosomes remained mainly as univalents that developed into micromeiocytes, pollen mother cell division was disrupted, and seed recovery was low after pollination. Type three hybrids showed chromosomes paired mostly as multivalents, chromosome bridges, pollen mother cell division with massive failure, and little fertility. In Doritaenopsis orchids, high pollen viability and high fertility depends on a high frequency of normal tetrads, and low seed set in cross-pollination is predicted with micronuclei in the end products of meiosis. The occurrence of chromosomal aberrations may suggest a process of genome differentiation that could compromise breeding efforts if not taken into consideration.


Genome ◽  
1988 ◽  
Vol 30 (1) ◽  
pp. 8-11
Author(s):  
H. S. Balyan ◽  
G. Fedak

Three hybrids of Triticum turgidum cv. Ma with Hordeum californicum × T. aestivum cv. Chinese Spring amphiploid were obtained at a frequency of 1.6% of the pollinated florets. Meiotic analysis of the hybrid plants revealed an average chiasma frequency per pollen mother cell ranging from 15.27 to 17.60. The lower than expected chromosome pairing in the hybrid plants was attributed to the suppression of pairing between homologous wheat chromosomes by pairing regulatory gene(s) in H. californicum.Key words: intergeneric hybrids, Hordeum californicum, Triticum turgidum, meiosis, chromosome pairing.


1983 ◽  
Vol 25 (5) ◽  
pp. 467-477 ◽  
Author(s):  
Bernard John ◽  
David C. Lightfoot ◽  
David B. Weissman

Trimerotropis suffusa Scudder is a species which ranges from the Rocky Mountains to the Californian Sierras and the Cascade Mountains of Oregon. Additionally, to the south, it is found along the coast of California to Mendocino County. Trimerotropis cyaneipennis Bruner has a distribution from West Texas through New Mexico, Arizona, Colorado, Utah, and Nevada to southern Oregon and southern California. These two species are most commonly ecologically isolated from each other, the latter generally occurring in desert regions or those with sparse vegetation whereas T. suffusa is found in woodland situations (Strohecker et al. 1968). Even where they approximate in their distributions, the ecotones which separate them are normally broad enough to preclude contact between them. These species have, however, been found in microsympatry in a narrow ecotone in the Pueblo Mountains of Southeast Oregon. Hybrid individuals intermediate in morphology, crepitation, and diploid chromosome number occur within this ecotone. A meiotic analysis of three such hybrid males indicates that the parental species are distinguished by a fixed centric fusion. This difference tends to be obscured in the parental karyotypes which both contain a variable number of metacentric chromosomes, some fixed and some polymorphic, of inversion origin. Meiotic behaviour also identifies two potential sources of infertility in these hybrids. First, irregular segregation of the fusion chromosomes, following either linear orientation of the three-multiple chain or else from failure of the chain to form. Second, pairing failure, usually in one less commonly in two, of the autosomal pairs not involved in the fusion system. The extent of these anomalies varied between the three hybrid individuals indicating that genotypic differences between the parents also play a role in determining multiple orientation and the levels of pairing failure in both the multiple and in the other autosomes which form univalents. The univalents that do form may either segregate at random or may lag on the first division spindle. In the latter event they inhibit cytokinesis at first division, and sometimes also at second division, giving rise to macrospermatids which are, respectively, diploid (2x) or tetraploid (4x). The net result of such an anomalous meiosis is that most of the sperm produced by all three hybrids is either polyploid or aneuploid.


Genome ◽  
1988 ◽  
Vol 30 (1) ◽  
pp. 1-7 ◽  
Author(s):  
H. W. Rines ◽  
S. S. Johnson

Three meiotic synapsis-deficient mutants of oats (Avena sativa L.) were analyzed to determine their inheritance pattern, detailed chromosomal behavior, and location to chromosome. These highly sterile mutants, one in the cultivar 'Stout' and two in 'Noble', had been recovered from progeny of sodium azide mutagenized populations. Each segregated as a single gene recessive. The only synapsis-deficient variants previously described in hexaploid oats have been nullisomics or ditelosomics. Mutant 'Stout 1212' was classified as asynaptic due to deficiencies in chromosome pairing at all meiotic stages. Mutants 'Noble 1362' and 'Noble 1911' were classified as desynaptic since their homologous chromosomes were paired in early meiosis but they disassociated prematurely in late prophase I. Using a partial monosomic series from the Welsh Plant Breeding Station, mutant 1212 was mapped to monosome XII and is probably a mutation in Syn-5, a gene previously defined only by its nulli effect. Mutants 1362 and 1911 were mapped to monosome IV and are probably mutations in Syn-1, a gene also previously defined only by its nulli effect. Seed set on the synaptic mutant plants in the field was less than 0.2% of that on fertile sibs and likely resulted from pollination by surrounding fertile plants. This seed may serve as a source of unique aneuploid stocks in oats.Key words: meiotic mutants, gene mapping, monosomics, nullisomics, oat cytogenetics.


1984 ◽  
Vol 26 (6) ◽  
pp. 679-681 ◽  
Author(s):  
S. E. Smith

Numerical methods of meiotic analysis were used to describe genomic affinities in triploid Medicago hybrids. No differences in affinity were observed among the genomes of M. sativa subsp. sativa, M. sativa subsp. caerulea, and M. falcata. This study establishes the feasibility of using meiotic analysis in cytotaxonomic studies in Medicago.Key words: alfalfa, chromosome pairing, cytotaxonomy, numerical analysis.


Genome ◽  
2000 ◽  
Vol 43 (6) ◽  
pp. 1045-1054 ◽  
Author(s):  
M Molnár-Láng ◽  
G Linc ◽  
A Logojan ◽  
J Sutka

New winter wheat (Triticum aestivum L.) × winter barley (Hordeum vulgare L.) hybrids produced using cultivated varieties (wheat 'Martonvásári 9 kr1'(Mv9 kr1) × barley 'Igri', Mv9 kr1 × 'Osnova', 'Asakazekomugi' × 'Manas') were multiplied in tissue culture because of the high degree of sterility and then pollinated with wheat to obtain backcross progenies. Meiotic analysis of the hybrids Mv9 kr1 × 'Igri' and 'Asakazekomugi' × 'Manas' and their in vitro regenerated progenies with the Feulgen method revealed 1.59 chromosome arm associations per cell in both initial hybrids. The number of chromosome arm associations increased after in vitro culture to 4.72 and 2.67, respectively, in the two combinations. According to the genomic in situ hybridization (GISH) analysis, wheat-barley chromosome arm associations made up 3.6% of the total in the initial Mv9 kr1 × 'Igri' hybrid and 6.6% and 16.5% of the total in in vitro regenerated progenies of the 'Asakazekomugi' × 'Manas' and Mv9 kr1 × 'Igri' hybrids, respectively. The demonstration by GISH of wheat-barley chromosome pairing in the hybrids and especially in their in vitro regenerated progenies proves the possibility of producing recombinants between these two genera, and thus of transferring useful characters from barley into wheat. In vitro conditions caused an increase in chromosome arm association frequency in both combinations and in fertility in some regenerants.Key words: wheat, barley, intergeneric hybridization, meiotic chromosome pairing, GISH.


Genome ◽  
1988 ◽  
Vol 30 (5) ◽  
pp. 647-651 ◽  
Author(s):  
C. C. Jan ◽  
J. M. Chandler ◽  
S. A. Wagner

Seedlings of the Helianthus annuus inbred lines P21 and HA89 were treated with colchicine to study chromosome doubling. Frequency of tetraploids, meiotic chromosome pairing, pollen stainability, and fertility were examined. Five-hour colchicines treatments at 0.15%, pH 5.4, with 2% dimethyl sulfoxide resulted in tetraploid sectors on 42% of P21 and 11% of HA89 plants. Tetraploids had larger disk florets and larger pollen grains. Otherwise, tetraploid plants were morphologically similar to their diploid progenitors. Tetraploidy in P21 was not stable, with plants having 2n = 4x = 65 to 70 chromosomes. Tetraploid plants of HA89 had reduced vigor and did not produce seed. At diakinesis, tetraploid P21 plants had an average of 0.85 univalents, 21.12 open bivalents, 6.66 closed bivalents, 0.21 trivalents, and 2.74 quadrivalents per cell. The number of chiasma per chromosome pair in P21 was reduced from 1.50 for diploid to 1.32 for tetraploid plants. Pollen stainability in tetraploid P21 was less than 50% and the plants produced an average of eight seeds per sibbed head, about 1% of normal seed set. Reciprocal crosses of diploid and tetraploid P21 produced four triploid plants. Backcrossing triploids to P21 produced 137 plants with 2n = 34 to 47 + t. Thirty-one of these plants were trisomies having 2n = 35.Key words: Helianthus annuus, tetraploids, triploids, trisomies.


1986 ◽  
Vol 28 (5) ◽  
pp. 770-776 ◽  
Author(s):  
Kevin B. Jensen ◽  
Douglas R. Dewey ◽  
Kay H. Asay

Elymus alatavicus (Drob.) A. Love and E. batalinii (Krasn.) A. Love were studied to determine (i) meiotic behaviour, (ii) the mode of reproduction, (iii) the relationship between the two species, (iv) genomic constitutions, and (v) the most logical taxonomic classification of both species. A series of F1 hybrids between E. alatavicus, E. batalinii, and six "analyzer" species were developed. Chromosome pairing was studied at metaphase I to identify genomic similarities or differences. The results showed that E. alatavicus and E. batalinii are caespitose, self-fertile allohexaploids (2n = 42) with the same genomic formula SSYYXX. The F1 hybrids between E. alatavicus and E. batalinii had complete pairing (21 bivalents) at metaphase I in 7% of the cells and almost complete pairing in the remaining cells. High chromosome pairing and partial fertility (4 seeds/plant) in the F1 hybrids shows that the two species are closely related. Hybrids were obtained between E. alatavicus or E. batalinii and the following "analyzer" species with known genomic formulas: Pseudoroegneria spicata (Pursh) A. Love, 2n = 14, SS; P. cognata (Hack.) A. Love, 2n = 14, SS; E. lanceolatus (Scribn. &Smith) Gould, 2n = 28, SSHH; E. trachycaulus1 (Link) Gould ex Shinners, 2n = 28, SSHH; E. mutabilis (Drob.) Tzvelev, 2n = 28, SSHH; and E. drobovii (Nevski) Tzvelev, 2n = 42, SSHHYY. Chromosome pairing in this series of hybrids demonstrated that E. alatavicus and E. batalinii contain an S and probably a Y genome plus an unknown genome, X, that may have been derived from Psathryostachys huashanica Keng or from Agropyron. Elymus alatavicus and E. batalinii are correctly classified in the genus Elymus.Key words: cytotaxonomy, Agropyron, meiosis, chromosome.


Sign in / Sign up

Export Citation Format

Share Document