Amplification of DNA sequences in wheat and its relatives: the Dgas44 and R350 families of repetitive sequences

Genome ◽  
1994 ◽  
Vol 37 (2) ◽  
pp. 320-327 ◽  
Author(s):  
D. McNeil ◽  
E. S. Lagudah ◽  
U. Hohmann ◽  
R. Appels

The sequence of a Triticum tauschii genomic clone representing a family of D-genome amplified DNA sequences, designated Dgas44, is reported. The Dgas44 sequence occurs on all chromosomes of the D genome of wheat, Triticum aestivum, and in situ hybridization revealed it to be evenly dispersed on all seven chromosome pairs. An internal HindIII fragment of Dgas44, designated Dgas44-3, defines the highly amplified region that is specific to the D genome. The polymerase chain reaction was used to amplify a 236-bp fragment within Dgas44-3 from chromosomes 1D, 2D, 3D, 4D, 5D, and 7D, and identical copies of this region of the Dgas44-3 sequence were found among the isolates from each of the chromosomes. The Dgas44-3 sequence population from specific chromosomes differed on average by 0.22% from the original Dgas44 sequence. The Dgas44 sequence was found to differentiate between the D genome present in T. aestivum, T. tauschii, hexaploid T. crassum, T. cylindricum, T. ventricosum, in which the sequence was present in a highly amplified form and T. juvenale, T. syriacum, and tetraploid T. crassum where the sequence family was difficult to detect. Another class of amplified sequences previously considered to be rye "specific." R350, was isolated from tetraploid wheat and its dispersed distribution on chromosomes was similar to the Dgas44 family in T. tauschii. In contrast with the Dgas44 sequence family, genome specificity for the remnant R350 sequence family was not evident since it was present on all wheat chromosomes.Key words: D genome, sequence amplification, in situ hybridization.

Genome ◽  
2006 ◽  
Vol 49 (5) ◽  
pp. 511-519 ◽  
Author(s):  
R R.-C Wang ◽  
J.-Y Zhang ◽  
B S Lee ◽  
K B Jensen ◽  
M Kishii ◽  
...  

The Ns genome of the genus Psathyrostachys is a component of the polyploid genome in the genus Leymus. Using fluorescence in situ hybridization (FISH), the occurrence and abundance of 2 tandem repetitive sequences from Leymus racemosus (Lam.) Tzvelev, pLrTaiI-1 (TaiI family) and pLrPstI-1 (1 class of 350-bp family), were assayed in 4 species of the genera Psathyrostachys and Leymus. The pLrPstI-1 sequence was absent in all 4 Psathyrostachys species. While P. fragilis and P. huashanica did not have the pLrTaiI-1 sequence, 15 accessions of P. juncea and 2 accessions of P. lanuginosa had pLrTaiI-1 sites ranging in number from 7 to 16 and from 2 to 21, respectively. The numbers of pLrTaiI-1 and pLrPstI-1 sites were 1-24 and 0-30, respectively, in L. ramosus; 2-31 and 5-36 in L. racemosus; 0-4 and 0 in L. mollis; 2-9 and 24-27 in L. secalinus. The FISH assay on pLrTaiI-1 was successfully converted to a sequence-tagged-site polymerase chain reaction (STS-PCR) test using a primer pair designed from the sequence of this repetitive DNA. Seventy-three accessions representing 27 Leymus species were assayed for the abundance of pLrTaiI-1 by STS-PCR. With a few exceptions of uniformity in some accessions, nearly all Leymus species observed were heterogeneous for the abundance of pLrTaiI-1 sequence and no Leymus species was totally devoid of this repetitive sequence. These findings may have significance for the understanding of phylogeny, nature of polyploidy, adaptive ranges, and breeding potential of Leymus species.Key words: FISH, genome, polyploid, 350 bp family, pLrTaiI-1, STS-PCR.


2005 ◽  
Vol 446 (2) ◽  
pp. 202-203 ◽  
Author(s):  
F. Alameda ◽  
L. Pijuan ◽  
L. Ferrer ◽  
M. L. Mari�oso ◽  
M. Muset ◽  
...  

2012 ◽  
Vol 43 (1) ◽  
pp. 393-404 ◽  
Author(s):  
Marcos Antonio Pereira de Lima ◽  
Márcia Valéria Pitombeira Ferreira ◽  
Marcos Aurélio Pessoa Barros ◽  
Maria Inês de Moura Campos Pardini ◽  
Adriana Camargo Ferrasi ◽  
...  

Genomics ◽  
1993 ◽  
Vol 15 (2) ◽  
pp. 430-432 ◽  
Author(s):  
Alan C. Gough ◽  
C.A.Dale Smith ◽  
Spencer M. Howell ◽  
C.Roland Wolf ◽  
Stephen P. Bryant ◽  
...  

Genetics ◽  
1994 ◽  
Vol 137 (1) ◽  
pp. 95-106 ◽  
Author(s):  
D Cassidy-Hanley ◽  
M C Yao ◽  
P J Bruns

Abstract A method for mapping DNA sequences to specific germinal chromosomes in the ciliated protozoan Tetrahymena thermophila has been developed. This mapping technique (PCR mapping) utilizes the polymerase chain reaction and template DNA derived from nullisomic strains to directly assign micronuclear DNA sequences to specific micronuclear chromosomes. Using this technique, a number of unique sequences and short repetitive sequences flanked by unique sequences have been mapped to four of the five germinal chromosomes.


Sign in / Sign up

Export Citation Format

Share Document