Introduction to the use of wavelet multiresolution analysis for intelligent structural health monitoring

2004 ◽  
Vol 31 (5) ◽  
pp. 719-731 ◽  
Author(s):  
M.M Reda Taha ◽  
A Noureldin ◽  
A Osman ◽  
N El-Sheimy

This paper suggests the use of wavelet multiresolution analysis (WMRA) as a reliable tool for digital signal processing in structural health monitoring (SHM) systems. A damage occurrence detection algorithm using WMRA augmented with artificial neural networks (ANN) is described. The suggested algorithm allows intelligent monitoring of structures in real time. The probability of damage occurrence is determined by evaluating the wavelet norm index (WNI) representing the energy of a signal describing the change in the system dynamics due to damage. An example application of the proposed algorithm is presented using a finite element simulated structural dynamics of a prestressed concrete bridge. The new algorithm showed very promising results.Key words: structural health monitoring, neural networks, wavelet analysis, signal processing, damage detection.

Author(s):  
Wiesław J Staszewski ◽  
Amy N Robertson

Signal processing is one of the most important elements of structural health monitoring. This paper documents applications of time-variant analysis for damage detection. Two main approaches, the time–frequency and the time–scale analyses are discussed. The discussion is illustrated by application examples relevant to damage detection.


Increased attentiveness on the environmental and effects of aging, deterioration and extreme events on civil infrastructure has created the need for more advanced damage detection tools and structural health monitoring (SHM). Today, these tasks are performed by signal processing, visual inspection techniques along with traditional well known impedance based health monitoring EMI technique. New research areas have been explored that improves damage detection at incipient stage and when the damage is substantial. Addressing these issues at early age prevents catastrophe situation for the safety of human lives. To improve the existing damage detection newly developed techniques in conjugation with EMI innovative new sensors, signal processing and soft computing techniques are discussed in details this paper. The advanced techniques (soft computing, signal processing, visual based, embedded IOT) are employed as a global method in prediction, to identify, locate, optimize, the damage area and deterioration. The amount and severity, multiple cracks on civil infrastructure like concrete and RC structures (beams and bridges) using above techniques along with EMI technique and use of PZT transducer. In addition to survey advanced innovative signal processing, machine learning techniques civil infrastructure connected to IOT that can make infrastructure smart and increases its efficiency that is aimed at socioeconomic, environmental and sustainable development.


2020 ◽  
pp. 147592172090454 ◽  
Author(s):  
Manuel A Vega ◽  
Michael D Todd

Many physics-based and surrogate models used in structural health monitoring are affected by different sources of uncertainty such as model approximations and simplified assumptions. Optimal structural health monitoring and prognostics are only possible with uncertainty quantification that leads to an informed course of action. In this article, a Bayesian neural network using variational inference is applied to learn a damage feature from a high-fidelity finite element model. Bayesian neural networks can learn from small and noisy data sets and are more robust to overfitting than artificial neural networks, which make it very suitable for applications such as structural health monitoring. Also, uncertainty estimates obtained from a trained Bayesian neural network model are used to build a cost-informed decision-making process. To demonstrate the applicability of Bayesian neural networks, an example of this approach applied to miter gates is presented. In this example, a degradation model based on real inspection data is used to simulate the damage evolution.


2011 ◽  
Vol 368-373 ◽  
pp. 2402-2405
Author(s):  
Nai Zhi Zhao ◽  
Chang Tie Huang ◽  
Xin Chen

Many of the wave propagation based structural health monitoring techniques rely on some knowledge of the structure in a healthy state in order to identify damage. Baseline measurements are recorded when a structure is pristine and are stored for comparison to future data. A concern with the use of baseline subtraction methods is the ability to discern structural changes from the effects of varying environmental and operational conditions when analyzing the vibration response of a system. The use of a standard baseline subtraction technique may falsely indicate damage when environmental or operational variations are present between baseline measurements and new measurements. A procedure was outlined for the method, including excitation and recording of Lamb waves, and the use of damage detection algorithms. In this paper, several tests are performed and the results are used to help develop the damage detection algorithms previously described, and to evaluate the performance of the instantaneous baseline SHM technique. Analytical testing is first performed by feeding known input signals into each damage detection algorithm and analyzing the output data. The results of the analytical testing are used to help develop the damage detection algorithms.


2013 ◽  
Vol 390 ◽  
pp. 192-197
Author(s):  
Giorgio Vallone ◽  
Claudio Sbarufatti ◽  
Andrea Manes ◽  
Marco Giglio

The aim of the current paper is to explore fuselage monitoring possibilities trough the usage of Artificial Neural Networks (ANNs), trained by the use of numerical models, during harsh landing events. A harsh landing condition is delimited between the usual operational conditions and a crash event. Helicopter structural damage due to harsh landings is generally less severe than damage caused by a crash but may lead to unscheduled maintenance events, involving costs and idle times. Structural Health Monitoring technologies, currently used in many application fields, aim at the continuous detection of damage that may arise, thereby improving safety and reducing maintenance idle times by the disposal of a ready diagnosis. A landing damage database can be obtained with relatively little effort by the usage of a numerical model. Simulated data are used to train various ANNs considering the landing parameter values as input. The influence of both the input and output noise on the system performances were taken into account. Obtained outputs are a general classification between damaged and undamaged conditions, based on a critical damage threshold, and the reconstruction of the fuselage damage state.


Sign in / Sign up

Export Citation Format

Share Document