Immunovirological studies on human respiratory syncytial virus structural proteins

1986 ◽  
Vol 32 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Michel Trudel ◽  
Francine Nadon ◽  
Cécile Séguin ◽  
Simone Ghoubril ◽  
Pierre Payment ◽  
...  

Immunovirological studies suggest that human respiratory syncytial virus may well be composed of five structural proteins as are other members of the Paramyxoviridae family: the two external membrane glycoproteins H (90 000) and Fo (F1, 49 000; F2, 20 000; disulfide linked), the internal membrane protein M (34 000), the nucleoprotein N (42 000), and a protein (78 000) designated P that could be the equivalent of the polymerase of the morbillivirus and paramyxovirus genus. Neutralizing monoclonal antibodies showed, by immunoprecipitation and immunoblotting, that the fusion protein carries neutralizing epitopes. One monoclonal antibody, which shows a high neutralizing titer, immunoblotted directly with the F1 fragment (49 000) of the fusion protein. Analysis in mice of the immunogenicity of the structural proteins separated on sodium dodecyl sulphate gels indicated that, under our conditions, only the fusion protein dimer Fo and its F1 fragment were capable of inducing neutralizing antibodies.

2017 ◽  
Vol 91 (13) ◽  
Author(s):  
Normand Blais ◽  
Martin Gagné ◽  
Yoshitomo Hamuro ◽  
Patrick Rheault ◽  
Martine Boyer ◽  
...  

ABSTRACT The human respiratory syncytial virus (hRSV) fusion (F) protein is considered a major target of the neutralizing antibody response to hRSV. This glycoprotein undergoes a major structural shift from the prefusion (pre-F) to the postfusion (post-F) state at the time of virus-host cell membrane fusion. Recent evidences suggest that the pre-F state is a superior target for neutralizing antibodies compared to the post-F state. Therefore, for vaccine purposes, we have designed and characterized a recombinant hRSV F protein, called Pre-F-GCN4t, stabilized in a pre-F conformation. To show that Pre-F-GCN4t does not switch to a post-F conformation, it was compared with a recombinant post-F molecule, called Post-F-XC. Pre-F-GCN4t was glycosylated and trimeric and displayed a conformational stability different from that of Post-F-XC, as shown by chemical denaturation. Electron microscopy analysis suggested that Pre-F-GCN4t adopts a lollipop-like structure. In contrast, Post-F-XC had a typical elongated conical shape. Hydrogen/deuterium exchange mass spectrometry demonstrated that the two molecules had common rigid folding core and dynamic regions and provided structural insight for their biophysical and biochemical properties and reactivity. Pre-F-GCN4t was shown to deplete hRSV-neutralizing antibodies from human serum more efficiently than Post-F-XC. Importantly, Pre-F-GCN4t was also shown to bind D25, a highly potent monoclonal antibody specific for the pre-F conformation. In conclusion, this construct presents several pre-F characteristics, does not switch to the post-F conformation, and presents antigenic features required for a protective neutralizing antibody response. Therefore, Pre-F-GCN4t can be considered a promising candidate vaccine antigen. IMPORTANCE Human respiratory syncytial virus (RSV) is a global leading cause of infant mortality and adult morbidity. The development of a safe and efficacious RSV vaccine remains an important goal. The RSV class I fusion (F) glycoprotein is considered one of the most promising vaccine candidates, and recent evidences suggest that the prefusion (pre-F) state is a superior target for neutralizing antibodies. Our study presents the physicochemical characterization of Pre-F-GCN4t, a molecule designed to be stabilized in the pre-F conformation. To confirm its pre-F conformation, Pre-F-GCN4t was analyzed in parallel with Post-F-XC, a molecule in the post-F conformation. Our results show that Pre-F-GCN4t presents characteristics of a stabilized pre-F conformation and support its use as an RSV vaccine antigen. Such an antigen may represent a significant advance in the development of an RSV vaccine.


2019 ◽  
Vol 71 ◽  
pp. 166-178 ◽  
Author(s):  
Somayeh Shatizadeh Malekshahi ◽  
Shaghayegh Razaghipour ◽  
Yazdan Samieipoor ◽  
Farhad B. Hashemi ◽  
Ali Akbar Rahbari Manesh ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 165 ◽  
Author(s):  
María Martín-Vicente ◽  
Salvador Resino ◽  
Isidoro Martínez

Human respiratory syncytial virus (HRSV) infection is a common cause of severe lower respiratory tract diseases such as bronchiolitis and pneumonia. Both virus replication and the associated inflammatory immune response are believed to be behind these pathologies. So far, no vaccine or effective treatment is available for this viral infection. With the aim of finding new strategies to counteract HRSV replication and modulate the immune response, specific small interfering RNAs (siRNAs) were generated targeting the mRNA coding for the viral fusion (F) protein or nucleoprotein (N), or for two proteins involved in intracellular immune signaling, which are named tripartite motif-containing protein 25 (TRIM25) and retinoic acid-inducible gene-I (RIG-I). Furthermore, two additional bispecific siRNAs were designed that silenced F and TRIM25 (TRIM25/HRSV-F) or N and RIG-I (RIG-I/HRSV-N) simultaneously. All siRNAs targeting N or F, but not those silencing TRIM25 or RIG-I alone, significantly reduced viral titers. However, while siRNAs targeting F inhibited only the expression of the F mRNA and protein, the siRNAs targeting N led to a general inhibition of viral mRNA and protein expression. The N-targeting siRNAs also induced a drastic decrease in the expression of genes of the innate immune response. These results show that both virus replication and the early innate immune response can be regulated by targeting distinct viral products with siRNAs, which may be related to the different role of each protein in the life cycle of the virus.


PLoS ONE ◽  
2013 ◽  
Vol 8 (5) ◽  
pp. e64012 ◽  
Author(s):  
Hsin Chi ◽  
Hsin-Fu Liu ◽  
Li-Chuan Weng ◽  
Nai-Yu Wang ◽  
Nan-Chang Chiu ◽  
...  

2004 ◽  
Vol 85 (12) ◽  
pp. 3677-3687 ◽  
Author(s):  
M. Begoña Ruiz-Argüello ◽  
Diana Martín ◽  
Steve A. Wharton ◽  
Lesley J. Calder ◽  
Steve R. Martín ◽  
...  

Virology ◽  
2002 ◽  
Vol 298 (2) ◽  
pp. 317-326 ◽  
Author(s):  
M. Begoña Ruiz-Argüello ◽  
Luis González-Reyes ◽  
Leslie J. Calder ◽  
Concepción Palomo ◽  
Diana Martı́n ◽  
...  

2008 ◽  
Vol 62 (2) ◽  
pp. 146-152 ◽  
Author(s):  
Helen A. Arcuri ◽  
Luciano H. Apponi ◽  
Sandro R. Valentini ◽  
Edison L. Durigon ◽  
Walter F. de Azevedo ◽  
...  

Virology ◽  
2000 ◽  
Vol 271 (1) ◽  
pp. 122-131 ◽  
Author(s):  
Leslie J. Calder ◽  
Luis González-Reyes ◽  
Blanca García-Barreno ◽  
Steve A. Wharton ◽  
John J. Skehel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document