The solution conformations of amino acids from molecular dynamics simulations of Gly-X-Gly peptides: comparison with NMR parameters

1998 ◽  
Vol 76 (2-3) ◽  
pp. 164-170 ◽  
Author(s):  
David van der Spoel

The conformations that amino acids can adopt in the random coil state are of fundamental interest in the context of protein folding research and studies of protein–peptide interactions. To date, no detailed quantitative data from experimental studies have been reported; only nuclear magnetic resonance parameters such as chemical shifts and J coupling constants have been reported. These experimental nuclear magnetic resonance data represent averages over multiple conformations, and hence they do not provide unique structural information. I have performed relatively long (2.5 ns) molecular dynamics simulations of Gly-X-Gly tripeptides, surrounded by explicit water molecules, where X represents eight different amino acids with long side chains. From the trajectories one can calculate time averaged backbone chemical shifts and 3JNHα coupling constants and compare these with experimental data. These calculated quantities are quite close to the experimental values for most amino acids, suggesting that these simulations are a good model for the random coil state of the tripeptides. On the basis of my simulations I predict 3Jαβ coupling constants and present dihedral distributions for the Φ, Ψ, as well as χ1 and χ2 angles. Finally, I present correlation plots for these dihedral angles.Key words: molecular dynamics (MD), nuclear magnetic resonance (NMR) spectroscopy, J-coupling, chemical shift, dihedral probability distribution.

1988 ◽  
Vol 110 (11) ◽  
pp. 3393-3396 ◽  
Author(s):  
Horst. Kessler ◽  
Christian. Griesinger ◽  
Joerg. Lautz ◽  
Arndt. Mueller ◽  
Wilfred F. Van Gunsteren ◽  
...  

1969 ◽  
Vol 47 (1) ◽  
pp. 1-17 ◽  
Author(s):  
L. D. Hall ◽  
J. F. Manville ◽  
N. S. Bhacca

A detailed study has been made of both the 1H and 19F nuclear magnetic resonance (n.m.r.) spectra of a series of hexopyranosyl fluoride derivatives. Some of the 1H spectra were measured at 220 MHz. The 1H spectral parameters define both the configuration and the conformation of each of these derivatives. Study of the 19F n.m.r. parameters revealed several stereospecific dependencies. The 19F chemical shifts depend upon, (a) the orientation of the fluorine substituent with respect to the pyranose ring and, (b) the relative orientation of other substituents attached to the ring; for acetoxy substituents, these configurational dependencies appear to be additive. The vicinal19F–1H coupling constants exhibit a marked angular dependence for which Jtrans = ca. 24 Hz whilst Jgauche = 1.0 to 1.5 Hz for [Formula: see text] and 7.5 to 12.6 Hz for [Formula: see text] The geminal19F–1H couplings depend on the orientation of the substituent at C-2; when this substituent is equatorial JF,H is ca. 53.5 Hz and when it is axial the value is ca. 49 Hz.


1969 ◽  
Vol 47 (1) ◽  
pp. 19-30 ◽  
Author(s):  
L. D. Hall ◽  
J. F. Manville

Detailed studies, by 1H and 19F nuclear magnetic resonance spectroscopy, of a series of fully esterified pentopyranosyl fluorides, show that all such derivatives favor that conformer in which the fluorine substituent is axially oriented. This conclusion is supported by separate considerations of the vicinal and geminal19F–1H and 1H–1H coupling constants, of the long-range (4J) 1H–1H and 19F–1H coupling constants and of the 19F chemical shifts. The limitations of the above conformational model are discussed.


Sign in / Sign up

Export Citation Format

Share Document