Dependence of the normal modes on the electronic structure of various phases of ice as calculated by ab initio methods

2003 ◽  
Vol 81 (1-2) ◽  
pp. 225-231 ◽  
Author(s):  
S Jenkins ◽  
S R Kirk ◽  
A S Côté ◽  
D K Ross ◽  
I Morrison

The charge-density distribution in various phases of ice is used to explore the information that can be obtained about the preferred directions of motion of atoms so as to investigate the possibility of the creation of more efficient and computationally cost-effective dynamical matrices. PACS Nos.: 63.20Dj, 31.90+s, 71.10-w

2004 ◽  
Vol 384 (1-3) ◽  
pp. 40-44 ◽  
Author(s):  
Konstatin A Lyssenko ◽  
Mikhail Yu Antipin ◽  
Mikhail E Gurskii ◽  
Yurii N Bubnov ◽  
Anna L Karionova ◽  
...  

1985 ◽  
Vol 158 ◽  
pp. 137-152
Author(s):  
M. Sanai ◽  
H. E. Lindberg ◽  
J. D. Colton

We have developed a compact and cost-effective shock tube to simulate the static and dynamic pressures of blast waves. The shock tube is open at both ends and is driven by high explosives distributed over a finite length of the tube near one end. The overall charge length is determined by the simulation time of interest, and the charge-density distribution is tailored to produce the pressure-waveform shape desired. For the shock tube to simulate a typical blast wave, the charge density must be highest at the charge front (closest to the test section) and gradually reduced towards the back. The resulting shock tube is an order of magnitude shorter than a conventional dynamic airblast simulator (DABS) in which concentrated explosives are used to drive the shock.Tailored charges designed using this method were built and tested in a simulation development programme sponsored by the U.S. Defense Nuclear Agency (DNA). The pressures measured for several charge distributions agreed very well with SRI's PUFF hydrocode computations and demonstrated the feasibility of the compact simulator under realistic test conditions.


2017 ◽  
Vol 35 (11) ◽  
pp. 1102-1114 ◽  
Author(s):  
Morris Marieli Antoinette ◽  
S. Israel ◽  
G. Sathya ◽  
Arlin Jose Amali ◽  
John L. Berchmans ◽  
...  

2015 ◽  
Vol 17 (9) ◽  
pp. 6667-6667
Author(s):  
Jonathan J. Du ◽  
Linda Váradi ◽  
Jinlong Tan ◽  
Yiliang Zhao ◽  
Paul W. Groundwater ◽  
...  

Correction for ‘Experimental and theoretical charge density distribution in Pigment Yellow 101’ by Jonathan J. Du et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c4cp04302b.


Sign in / Sign up

Export Citation Format

Share Document