GAMMA RAYS FROM THE DEUTERON BOMBARDMENT OF BORON 10

1955 ◽  
Vol 33 (12) ◽  
pp. 828-840 ◽  
Author(s):  
J. T. Sample ◽  
G. C. Neilson ◽  
G. B. Chadwick ◽  
J. B. Warren

Bombardment of B10 with 1.4 Mev. deuterons has been found to produce gamma rays of energy 4.46 ±.04, 4.75 ±.03, 5.03 ±.09, 5.35 ±.05, 6.52 ±.04, 6.78 ±.07, 7.29 ±.04, 8.27 ±.09, and 8.87 ±.02 Mev., as measured with a three-crystal pair spectrometer. Tentative assignments to transitions in B11 and C11 agree well in most cases with the known energy level schemes. No gamma rays of very high energy were observed, even with a single-crystal spectrometer; consequently an upper limit of 10−31 cm.2 has been placed on the cross-section of B10(d, γ)C12 at 0.95 Mev. bombarding energy.

2014 ◽  
Vol 734 ◽  
pp. 207-209 ◽  
Author(s):  
M.M. Block ◽  
L. Stodolsky

2014 ◽  
Vol 3 (3) ◽  
Author(s):  
Evelyn Olesch ◽  
Gerd Häusler ◽  
André Wörnlein ◽  
Friedrich Stinzing ◽  
Christopher van Eldik

AbstractWe discuss the inspection of large-sized, spherical mirror tiles by ‘Phase Measuring Deflectometry’ (PMD). About 10 000 of such mirror tiles, each satisfying strict requirements regarding the spatial extent of the point-spread-function (PSF), are planned to be installed on the Cherenkov Telescope Array (CTA), a future ground-based instrument to observe the sky in very high energy gamma-rays. Owing to their large radii of curvature of up to 60 m, a direct PSF measurement of these mirrors with concentric geometry requires large space. We present a PMD sensor with a footprint of only 5×2×1.2 m


1990 ◽  
Vol 16 (12) ◽  
pp. 1773-1803 ◽  
Author(s):  
P M Chadwick ◽  
T J L McComb ◽  
K E Turver

2010 ◽  
Vol 19 (06) ◽  
pp. 1023-1029
Author(s):  
◽  
JAVIER RICO

MAGIC is a single-dish Cherenkov telescope located on La Palma (Spain), hence with an optimal view on the Northern sky. Sensitive to the 30 GeV–30 TeV energy band, it is nowadays the only ground-based instrument being able to measure high-energy gamma-rays below 100 GeV. With the operation in coincidence with MACIC-II, starting in Fall 2009, the sensitivity will be improved by a factor ~ 2. We review the results obtained by MAGIC on the very-high energy emission from pulsars, binary systems and microquasars.


1996 ◽  
Vol 160 ◽  
pp. 363-364
Author(s):  
S.A. Dazeley ◽  
P.G. Edwards ◽  
J.R. Patterson ◽  
G.P. Rowell ◽  
M. Sinnott ◽  
...  

TheCollaboration ofAustralia andNippon for aGAmmaRayObservatory in theOutback operates two large telescopes at Woomera (South Australia), which detect the Čerenkov light images produced in the atmosphere by electronpositron cascades initiated by very high energy (~1 TeV or 1012eV) gamma rays. These gamma rays arise from a different mechanism than at EGRET energies: inverse Compton (IC) emission from relativistic electrons.The spoke-like images are recorded by a multi-pixel camera which facilitates the rejection of the large numbers of oblique and ragged cosmic ray images. A field of view ~3.5° is required. The Australian team operates a triple 4 m diameter mirror telescope, BIGRAT, with a 37 photomultiplier tube camera and energy threshold 600 GeV. The Japanese operate a single, highly accurate 3.8 m diameter f/1 telescope and high resolution 256 photomultipler tube camera. In 1998 a new 7 m telescope is planned for Woomera with a design threshold ~;200GeV.


1998 ◽  
Vol 188 ◽  
pp. 125-128
Author(s):  
T. Kifune

The current status of very high energy gamma ray astronomy (in ~ 1 TeV region) is described by using as example results of CANGAROO (Collaboration of Australia and Nippon for a GAmma Ray Observatory in the Outback). Gamma rays at TeV energies, emitted through inverse Compton effect of electrons or π0 decay from proton interaction, provide direct evidence on “hot” non-thermal processes of the Universe, as well as environmental features, such as the strength of magnetic field in the emission region, for the non-thermal processes.


Sign in / Sign up

Export Citation Format

Share Document