HIGH-ALTITUDE COSMIC RAY MEASUREMENTS AT FORT CHURCHILL

1960 ◽  
Vol 38 (5) ◽  
pp. 638-641 ◽  
Author(s):  
I. B. McDiarmid ◽  
D. C. Rose

Measurements with rocket-borne Geiger counters have been carried out at altitudes up to 250 km at Fort Churchill, Manitoba. The total primary cosmic ray intensity at a time near a solar maximum has been determined and compared with other measurements taken at times of high solar activity and also with other Geiger counter measurements obtained near a solar minimum. A low-energy radiation was observed whose intensity increased with altitude up to about 25% of the primary intensity at 250 km.

1958 ◽  
Vol 36 (7) ◽  
pp. 824-839 ◽  
Author(s):  
A. G. Fenton ◽  
D. C. Rose ◽  
K. B. Fenton

Results from neutron monitors and meson telescopes at Ottawa (geomagnetic latitude 57° N.) and Resolute (geomagnetic latitude 83° N.) are presented for the years 1954–57, a period of increasing solar activity. The results indicate that the sea level meson intensity at these latitudes decreased by 5–6% between April 1954 and December 1957. During the same period the intensity of the nucleonic component at these stations decreased by over 22%. Investigation of the relative response of the two types of recorder to transient decreases during this period indicates that the long term change in the intensity level cannot be explained completely as an accumulation of shorter transient decreases, which become more frequent at times of high solar activity. It is concluded that the transient decreases are superimposed upon the longer term changes, each being produced by a separate modulation process but ultimately controlled by the general level of solar activity. Significant differences are found in the shape of transient decreases observed at the Canadian stations, both between different components at the one station and the same component at different stations. These may be interpreted as due to a varying energy dependence from one transient decrease to another, and to anisotropy in the primary cosmic radiation at these times.


1968 ◽  
Vol 46 (10) ◽  
pp. S831-S834
Author(s):  
G. A. Bazilevskaya

Sporadic cyclic variations of the cosmic-ray intensity with periods of 19 to 24 days have been found from the results of balloon and neutron monitor observations. These variations were observed mainly in the years of high solar activity, 1958–62. They appeared to be caused by the general solar activity which, as our treatment has shown, undergoes similar cyclic variations (according to sunspot number or 10.7-cm radio-emissions). The variations under investigation appear with a lag of about 1.5 months compared with the solar-activity variations.


2016 ◽  
Vol 78 (5-8) ◽  
Author(s):  
Mariyam Jamilah Homam ◽  
Mohamad Aizat Ezri Ahmad Hapizudin

Variations in the Total Electron Content of the ionosphere were studied by utilizing data from the GISTM receiver installed at Universiti Tun Hussein Onn Malaysia. The study was conducted during periods of low solar activity (July 2007–July 2008) and high solar activity (July 2013–July 2014). Results show that the TEC are dependent on the solar activity.The values during high solar activity were significantly higher than that obtained during the solar minimum phase. The minimum TEC values for both phases varied between 89% and 97%, and the maximum TEC values varied between 70% and 81%. The pattern of daily TEC value changes was constant, and TEC peaked in the afternoon at ~14 LT. The highest TEC recorded during the solar maximum phase was 144.5 TEC Unit (TECU) in April 2014, whereas the highest TEC recorded during the solar minimum phase was 36.3 TECU in April 2008. TEC was maximized from March to May under both solar maximum and minimum phases.


1968 ◽  
Vol 46 (10) ◽  
pp. S823-S824
Author(s):  
S. N. Vernov ◽  
A. N. Charakhchyan ◽  
T. N. Charakhchyan ◽  
Yu. J. Stozhkov

The results of the analysis of data obtained from measurements carried out by means of regular stratospheric launchings of cosmic-ray radiosondes over the Murmansk region and the Antarctic observatory in Mirny in 1963–66 are presented. The problem of the anisotropy of the primary component of low-energy cosmic rays and of temperature effects on the cosmic-ray intensity in the atmosphere are discussed.


1998 ◽  
Vol 81 (19) ◽  
pp. 4052-4055 ◽  
Author(s):  
H. Matsunaga ◽  
S. Orito ◽  
H. Matsumoto ◽  
K. Yoshimura ◽  
A. Moiseev ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document