Field investigation of axial monotonic and cyclic performance of reinforced helical pulldown micropiles

2012 ◽  
Vol 49 (5) ◽  
pp. 560-573 ◽  
Author(s):  
M.M. El Sharnouby ◽  
M.H. El Naggar

Helical piles are used increasingly to support new and existing foundations. This paper presents a field study on the axial monotonic and cyclic behaviour of steel fibre–reinforced helical pulldown micropiles. Test piles consisted of a round corner square helical pile with three helices attached to it, and a steel fibre–reinforced grout shaft. To assess the grout shaft contribution, one helical pile without a grout shaft was tested. Piles were instrumented with strain gauges to evaluate the load-transfer mechanism. This paper discusses the load–displacement response of this pile system, and load-sharing mechanism between the grout shaft and lead section. The study shows that the grout shaft significantly improves the helical pile axial performance. It was found that the load-transfer mechanism within the lead section is through individual bearing of each helix. Also, the findings demonstrate that the behaviour of this pile system is satisfactory under one-way cyclic loading conditions. The results suggest that the reinforced helical pulldown micropile is a viable deep foundation option for axial monotonic and one-way cyclic loading applications.

2018 ◽  
Vol 55 (10) ◽  
pp. 1405-1420 ◽  
Author(s):  
M.M. El Sharnouby ◽  
M.H. El Naggar

Different forms of grouted helical piles are increasingly used to support new and existing foundations. In particular, different methods are used to enhance the lateral and cyclic performance of helical piles for applications in seismic regions. This paper presents a field study on the lateral monotonic and cyclic behaviour of steel fibre–reinforced helical pulldown micropiles (RHPM) and fibre-reinforced polymer – steel fibre–reinforced helical pulldown micropiles (FRP–RHPM). The study shows that the grout shaft and (or) the fibre-reinforced polymer (FRP) sleeve significantly improve the helical pile lateral performance. In addition, the piles showed a significant ductility (no observed failure up to 75 mm displacement or 50% of pile diameter). Two-way cyclic loading resulted in overall degradation in pile response relative to its static performance. Degradation is found to stem from the formation of gaps between the pile and soil, rather than soil stiffness degradation. Formation of gaps leads to the piles having a “preferential direction” with one side providing higher resistance (i.e., stiffness) than the other side. Design charts of various pile configurations are presented.


2020 ◽  
Vol 222 ◽  
pp. 111088
Author(s):  
Lili Sui ◽  
Shiyong Fan ◽  
Zhenyu Huang ◽  
Wei Zhang ◽  
Yingwu Zhou ◽  
...  

2021 ◽  
Vol 226 ◽  
pp. 111427
Author(s):  
Zhenyu Huang ◽  
Xiaolong Zhao ◽  
Wei Zhang ◽  
Zhanxia Fu ◽  
Yingwu Zhou ◽  
...  

2020 ◽  
Vol 50 (6) ◽  
pp. 871-879
Author(s):  
Hossein Soltani-Jigheh ◽  
Pouya Zahedi

Sign in / Sign up

Export Citation Format

Share Document