EBULLIOMETRY AND THE DETERMINATION OF THE MOLECULAR WEIGHTS OF POLYMERS: PART I. THE SMALL EBULLIOMETER

1959 ◽  
Vol 37 (9) ◽  
pp. 1508-1516 ◽  
Author(s):  
W. R. Blackmore

An ebulliometer that has been in routine use for the determination of the number average molecular weight of polymers is described. The results obtained with two different series of polythenes (which were also measured elsewhere) are given. These results show this ebulliometer to be subject to experimental difficulties which limit it to number average molecular weights of perhaps 20,000 depending on the precision required.

1943 ◽  
Vol 16 (3) ◽  
pp. 493-508
Author(s):  
Paul J. Flory

Abstract Experimental methods for fractionating polyisobutylene and for determining osmotic pressures have been described. The ratio π/c of osmotic pressure to concentration has been found in the case of cyclohexane solutions of polyisobutylene to vary nonlinearly with concentration, contrary to recent theories advanced by Huggins and the writer. The slope of this relationship appears to be independent of molecular weight. Reliable methods for extrapolating π/c to c=0 have been established, enabling the determination of absolute molecular weights with satisfactory precision up to values of about 1,000,000. Molecular weights of polyisobutylenes calculated from Staudinger's equation are too low; the discrepancy is more than ten-fold at high molecular weights. On the basis of data for carefully fractionated samples covering a two-hundred-fold molecular weight range, the intrinsic viscosity is found to be proportional to the 0.64 power of the molecular weight. This decided deviation from Staudinger's “law”cannot in this instance be attributed to nonlinear chain structure, as Staudinger has sought to do in other cases. This dependence of molecular weight on intrinsic viscosity leads to the definition of a “viscosity average”molecular weight which is obtained when the relationship is applied to heterogeneous polymers. The viscosity average is less than the weight average molecular weight, which would be obtained if Staudinger's equation were applicable, and greater than the number average obtained by osmotic or cryoscopic methods.


1983 ◽  
Vol 209 (2) ◽  
pp. 461-470 ◽  
Author(s):  
P Londei ◽  
A Teichner ◽  
P Cammarano ◽  
M De Rosa ◽  
A Gambacorta

1. The ribosomal subunits of one thermoacidophilic archaebacterium (Caldariella acidophila) and of two reference eubacterial species (Bacillus acidocaldarius, Escherichia coli) were compared with respect to ribosome mass and protein composition by (i) equilibrium-density sedimentation of the particles in CsCl and (ii) gel-electrophoretic estimations of the molecular weights of the protein and the rRNA. 2. By either procedure, it is estimated that synthetically active archaebacterial 30S subunits (52% protein by wt.) are appreciably richer in protein than the corresponding eubacterial particles (31% protein by wt.) 3. The greater protein content of the archaebacterial 30S subunits is accounted for by both a larger number and a greater average molecular weight of the subunit proteins; specifically, C. acidophila 30S subunits yield 28 proteins whose combined mass is 0.6×10(6) Da, compared with 20 proteins totalling 0.35×10(6) Da mass for eubacterial 30S subunits. 4. No differences in protein number are detected among the large subunits, but C. acidophila 50S subunits exhibit a greater number-average molecular weight of their protein components than do eubacterial 50S particles. 5. Particle weights estimated by either buoyant-density data, or molecular weights of rRNA plus protein, agree to within less than 2%. By either procedure C. acidophila 30S subunits 1.15×10(6) Da mass) are estimated to be about 300 000 Da heavier than their eubacterial counterparts (0.87×10(6) Da mass); a smaller difference. 0.15×10(6) Da, exists between the archaebacterial and the eubacterial 50S subunits (respectively 1.8×10(6) and 1.65×10(6) Da). It is concluded that the heavier-than-eubacterial mass of the C. acidophila ribosomes resides principally in their smaller subunits.


1951 ◽  
Vol 24 (2) ◽  
pp. 457-461 ◽  
Author(s):  
W. J. van Essen

Abstract A method is described for determining viscometrically the molecular weight of rubber in freshly tapped latex. For this purpose the latex is dissolved in a toluene-pyridine mixture. From the intrinsic viscosity of this solution the molecular weight of the rubber can be determined by the Staudinger equation and a known viscosity constant. Molecular weights varying between 238,000 and 480,000 have been found, depending on the kind of clone. Rubber in fresh latex does not have a lower molecular weight than in old preserved latex.


1955 ◽  
Vol 8 (1) ◽  
pp. 122 ◽  
Author(s):  
BS Harrap

Using the monolayer technique, number-average molecular weights have been determined for a series of extracts of wool prepared by successive treatments with alkaline sodium thioglycollate. The molecular weights of these extracts have been discussed in relation to their electrophoretic patterns. The change in the number-average molecular weight in the successive extracts has been correlated with the presence of certain electrophoretic components. The possibility of extraction of lipoidal or other non-protein material from the cortical cell walls is discussed. A reversible dissociation of the major electrophoretic component at high pH was observed.


Sign in / Sign up

Export Citation Format

Share Document